Loading…
Molybdenum enzymes and molybdenum cofactor in mycobacteria
When intracelluar pathogens enter the host macrophages where in addition to oxidative and antibiotic mechanisms of antimicrobial activity, nutrients are deprived. Human pathogen Mycobacterium tuberculosis is one of macrophage parasitisms, which can replicate and persist for decades in dormancy state...
Saved in:
Published in: | Journal of cellular biochemistry 2011-10, Vol.112 (10), p.2721-2728 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When intracelluar pathogens enter the host macrophages where in addition to oxidative and antibiotic mechanisms of antimicrobial activity, nutrients are deprived. Human pathogen Mycobacterium tuberculosis is one of macrophage parasitisms, which can replicate and persist for decades in dormancy state in virulent environments. It is very successful in escaping the killing mechanisms of macrophage. Molybdenum (Mo) enzymes involve in the global carbon, sulfur, and nitrogen cycles by catalyzing important redox reactions. There are several Mo enzymes in mycobacteria and they exert several important physiological functions, such as dormancy regulation, the metabolism of energy sources, and nitrogen source. Pterin‐based Mo cofactor (Moco) is the common cofactor of the Mo enzymes in mycobacteria but the cofactor biosynthesis is nearly an untapped area. The present article discusses the physiological function of Mo enzymes and the structural feature of the genes coding for Moco biosynthesis enzymes in mycobacteria. J. Cell. Biochem. 112: 2721–2728, 2011. © 2011 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0730-2312 1097-4644 1097-4644 |
DOI: | 10.1002/jcb.23233 |