Loading…

Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells

A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2006-03, Vol.27 (3), p.163-165
Main Authors: Carnel, L., Dekkers, H.F.W., Gordon, I., Van Gestel, D., Van Nieuwenhuysen, K., Beaucarne, G., Poortmans, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523
cites cdi_FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523
container_end_page 165
container_issue 3
container_start_page 163
container_title IEEE electron device letters
container_volume 27
creator Carnel, L.
Dekkers, H.F.W.
Gordon, I.
Van Gestel, D.
Van Nieuwenhuysen, K.
Beaucarne, G.
Poortmans, J.
description A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries.
doi_str_mv 10.1109/LED.2005.863566
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_896189484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1599467</ieee_id><sourcerecordid>28107347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EEsvCmQMXCwnKJdtx_JG4N9QWirSCQ-EcTZ0J68pxFjuLlP8er7ZSJQ69zBzm997M6DH2VsBGCLDn2-urTQ2gN62R2phnbCW0bivQRj5nK2iUqKQA85K9yvkeQCjVqBX7ezsf-oVPA593xHdLn6bfFHH2U-QjuR1Gn0d-t_CEe98foTRi4BgjlVZkt_77xQ33sYx8rAYfRr6fwuLSkmcMwUeqsg_eFb88BUzcUQj5NXsxYMj05qGv2a8v1z8vb6rtj6_fLj9vK6e0nqueBl1LDQjWkUVp0JSnenfXUI2NMgr6mqg2hBKckj2ga00pwtWuFUW6Zmcn332a_hwoz93o8_ECjDQdctdaI1qrWlXIj0-SdSugkaop4KcnQWEaoaTWYAv6_j_0fjqkWB7urKjBKlPCWbPzE-TSlHOiodsnP2JaOgHdMdmuJNsdk-1OyRbFhwdbzA7DkDA6nx9ljdYWrCjcuxPniehxrG1Z3Mh_3MisEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912094656</pqid></control><display><type>article</type><title>Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Carnel, L. ; Dekkers, H.F.W. ; Gordon, I. ; Van Gestel, D. ; Van Nieuwenhuysen, K. ; Beaucarne, G. ; Poortmans, J.</creator><creatorcontrib>Carnel, L. ; Dekkers, H.F.W. ; Gordon, I. ; Van Gestel, D. ; Van Nieuwenhuysen, K. ; Beaucarne, G. ; Poortmans, J.</creatorcontrib><description>A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2005.863566</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Atomic layer deposition ; Compound structure devices ; Costs ; Devices ; Diffusion ; Electronics ; Energy ; Exact sciences and technology ; Grain boundaries ; Grain size ; Grains ; Hydrogen ; Hydrogen storage ; Hydrogenation ; Natural energy ; Optoelectronic devices ; P-n junctions ; Passivation ; Photovoltaic cells ; Photovoltaic conversion ; polycrystalline-silicon (pc-Si) ; Rapid thermal annealing ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Thin films ; Transistors</subject><ispartof>IEEE electron device letters, 2006-03, Vol.27 (3), p.163-165</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523</citedby><cites>FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1599467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17559091$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carnel, L.</creatorcontrib><creatorcontrib>Dekkers, H.F.W.</creatorcontrib><creatorcontrib>Gordon, I.</creatorcontrib><creatorcontrib>Van Gestel, D.</creatorcontrib><creatorcontrib>Van Nieuwenhuysen, K.</creatorcontrib><creatorcontrib>Beaucarne, G.</creatorcontrib><creatorcontrib>Poortmans, J.</creatorcontrib><title>Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries.</description><subject>Applied sciences</subject><subject>Atomic layer deposition</subject><subject>Compound structure devices</subject><subject>Costs</subject><subject>Devices</subject><subject>Diffusion</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Grains</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Natural energy</subject><subject>Optoelectronic devices</subject><subject>P-n junctions</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>polycrystalline-silicon (pc-Si)</subject><subject>Rapid thermal annealing</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0EEsvCmQMXCwnKJdtx_JG4N9QWirSCQ-EcTZ0J68pxFjuLlP8er7ZSJQ69zBzm997M6DH2VsBGCLDn2-urTQ2gN62R2phnbCW0bivQRj5nK2iUqKQA85K9yvkeQCjVqBX7ezsf-oVPA593xHdLn6bfFHH2U-QjuR1Gn0d-t_CEe98foTRi4BgjlVZkt_77xQ33sYx8rAYfRr6fwuLSkmcMwUeqsg_eFb88BUzcUQj5NXsxYMj05qGv2a8v1z8vb6rtj6_fLj9vK6e0nqueBl1LDQjWkUVp0JSnenfXUI2NMgr6mqg2hBKckj2ga00pwtWuFUW6Zmcn332a_hwoz93o8_ECjDQdctdaI1qrWlXIj0-SdSugkaop4KcnQWEaoaTWYAv6_j_0fjqkWB7urKjBKlPCWbPzE-TSlHOiodsnP2JaOgHdMdmuJNsdk-1OyRbFhwdbzA7DkDA6nx9ljdYWrCjcuxPniehxrG1Z3Mh_3MisEg</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Carnel, L.</creator><creator>Dekkers, H.F.W.</creator><creator>Gordon, I.</creator><creator>Van Gestel, D.</creator><creator>Van Nieuwenhuysen, K.</creator><creator>Beaucarne, G.</creator><creator>Poortmans, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060301</creationdate><title>Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells</title><author>Carnel, L. ; Dekkers, H.F.W. ; Gordon, I. ; Van Gestel, D. ; Van Nieuwenhuysen, K. ; Beaucarne, G. ; Poortmans, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Atomic layer deposition</topic><topic>Compound structure devices</topic><topic>Costs</topic><topic>Devices</topic><topic>Diffusion</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Grains</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Natural energy</topic><topic>Optoelectronic devices</topic><topic>P-n junctions</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>polycrystalline-silicon (pc-Si)</topic><topic>Rapid thermal annealing</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnel, L.</creatorcontrib><creatorcontrib>Dekkers, H.F.W.</creatorcontrib><creatorcontrib>Gordon, I.</creatorcontrib><creatorcontrib>Van Gestel, D.</creatorcontrib><creatorcontrib>Van Nieuwenhuysen, K.</creatorcontrib><creatorcontrib>Beaucarne, G.</creatorcontrib><creatorcontrib>Poortmans, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnel, L.</au><au>Dekkers, H.F.W.</au><au>Gordon, I.</au><au>Van Gestel, D.</au><au>Van Nieuwenhuysen, K.</au><au>Beaucarne, G.</au><au>Poortmans, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2006-03-01</date><risdate>2006</risdate><volume>27</volume><issue>3</issue><spage>163</spage><epage>165</epage><pages>163-165</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2005.863566</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2006-03, Vol.27 (3), p.163-165
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_miscellaneous_896189484
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Atomic layer deposition
Compound structure devices
Costs
Devices
Diffusion
Electronics
Energy
Exact sciences and technology
Grain boundaries
Grain size
Grains
Hydrogen
Hydrogen storage
Hydrogenation
Natural energy
Optoelectronic devices
P-n junctions
Passivation
Photovoltaic cells
Photovoltaic conversion
polycrystalline-silicon (pc-Si)
Rapid thermal annealing
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Thin films
Transistors
title Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20hydrogenation%20mechanism%20by%20rapid%20thermal%20anneal%20of%20SiN:H%20in%20thin-film%20polycrystalline-silicon%20solar%20cells&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Carnel,%20L.&rft.date=2006-03-01&rft.volume=27&rft.issue=3&rft.spage=163&rft.epage=165&rft.pages=163-165&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2005.863566&rft_dat=%3Cproquest_ieee_%3E28107347%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912094656&rft_id=info:pmid/&rft_ieee_id=1599467&rfr_iscdi=true