Loading…
Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells
A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers...
Saved in:
Published in: | IEEE electron device letters 2006-03, Vol.27 (3), p.163-165 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523 |
container_end_page | 165 |
container_issue | 3 |
container_start_page | 163 |
container_title | IEEE electron device letters |
container_volume | 27 |
creator | Carnel, L. Dekkers, H.F.W. Gordon, I. Van Gestel, D. Van Nieuwenhuysen, K. Beaucarne, G. Poortmans, J. |
description | A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries. |
doi_str_mv | 10.1109/LED.2005.863566 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_896189484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1599467</ieee_id><sourcerecordid>28107347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EEsvCmQMXCwnKJdtx_JG4N9QWirSCQ-EcTZ0J68pxFjuLlP8er7ZSJQ69zBzm997M6DH2VsBGCLDn2-urTQ2gN62R2phnbCW0bivQRj5nK2iUqKQA85K9yvkeQCjVqBX7ezsf-oVPA593xHdLn6bfFHH2U-QjuR1Gn0d-t_CEe98foTRi4BgjlVZkt_77xQ33sYx8rAYfRr6fwuLSkmcMwUeqsg_eFb88BUzcUQj5NXsxYMj05qGv2a8v1z8vb6rtj6_fLj9vK6e0nqueBl1LDQjWkUVp0JSnenfXUI2NMgr6mqg2hBKckj2ga00pwtWuFUW6Zmcn332a_hwoz93o8_ECjDQdctdaI1qrWlXIj0-SdSugkaop4KcnQWEaoaTWYAv6_j_0fjqkWB7urKjBKlPCWbPzE-TSlHOiodsnP2JaOgHdMdmuJNsdk-1OyRbFhwdbzA7DkDA6nx9ljdYWrCjcuxPniehxrG1Z3Mh_3MisEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912094656</pqid></control><display><type>article</type><title>Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Carnel, L. ; Dekkers, H.F.W. ; Gordon, I. ; Van Gestel, D. ; Van Nieuwenhuysen, K. ; Beaucarne, G. ; Poortmans, J.</creator><creatorcontrib>Carnel, L. ; Dekkers, H.F.W. ; Gordon, I. ; Van Gestel, D. ; Van Nieuwenhuysen, K. ; Beaucarne, G. ; Poortmans, J.</creatorcontrib><description>A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2005.863566</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Atomic layer deposition ; Compound structure devices ; Costs ; Devices ; Diffusion ; Electronics ; Energy ; Exact sciences and technology ; Grain boundaries ; Grain size ; Grains ; Hydrogen ; Hydrogen storage ; Hydrogenation ; Natural energy ; Optoelectronic devices ; P-n junctions ; Passivation ; Photovoltaic cells ; Photovoltaic conversion ; polycrystalline-silicon (pc-Si) ; Rapid thermal annealing ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Thin films ; Transistors</subject><ispartof>IEEE electron device letters, 2006-03, Vol.27 (3), p.163-165</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523</citedby><cites>FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1599467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17559091$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carnel, L.</creatorcontrib><creatorcontrib>Dekkers, H.F.W.</creatorcontrib><creatorcontrib>Gordon, I.</creatorcontrib><creatorcontrib>Van Gestel, D.</creatorcontrib><creatorcontrib>Van Nieuwenhuysen, K.</creatorcontrib><creatorcontrib>Beaucarne, G.</creatorcontrib><creatorcontrib>Poortmans, J.</creatorcontrib><title>Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries.</description><subject>Applied sciences</subject><subject>Atomic layer deposition</subject><subject>Compound structure devices</subject><subject>Costs</subject><subject>Devices</subject><subject>Diffusion</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Grains</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Natural energy</subject><subject>Optoelectronic devices</subject><subject>P-n junctions</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>polycrystalline-silicon (pc-Si)</subject><subject>Rapid thermal annealing</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0EEsvCmQMXCwnKJdtx_JG4N9QWirSCQ-EcTZ0J68pxFjuLlP8er7ZSJQ69zBzm997M6DH2VsBGCLDn2-urTQ2gN62R2phnbCW0bivQRj5nK2iUqKQA85K9yvkeQCjVqBX7ezsf-oVPA593xHdLn6bfFHH2U-QjuR1Gn0d-t_CEe98foTRi4BgjlVZkt_77xQ33sYx8rAYfRr6fwuLSkmcMwUeqsg_eFb88BUzcUQj5NXsxYMj05qGv2a8v1z8vb6rtj6_fLj9vK6e0nqueBl1LDQjWkUVp0JSnenfXUI2NMgr6mqg2hBKckj2ga00pwtWuFUW6Zmcn332a_hwoz93o8_ECjDQdctdaI1qrWlXIj0-SdSugkaop4KcnQWEaoaTWYAv6_j_0fjqkWB7urKjBKlPCWbPzE-TSlHOiodsnP2JaOgHdMdmuJNsdk-1OyRbFhwdbzA7DkDA6nx9ljdYWrCjcuxPniehxrG1Z3Mh_3MisEg</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Carnel, L.</creator><creator>Dekkers, H.F.W.</creator><creator>Gordon, I.</creator><creator>Van Gestel, D.</creator><creator>Van Nieuwenhuysen, K.</creator><creator>Beaucarne, G.</creator><creator>Poortmans, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060301</creationdate><title>Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells</title><author>Carnel, L. ; Dekkers, H.F.W. ; Gordon, I. ; Van Gestel, D. ; Van Nieuwenhuysen, K. ; Beaucarne, G. ; Poortmans, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Atomic layer deposition</topic><topic>Compound structure devices</topic><topic>Costs</topic><topic>Devices</topic><topic>Diffusion</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Grains</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Natural energy</topic><topic>Optoelectronic devices</topic><topic>P-n junctions</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>polycrystalline-silicon (pc-Si)</topic><topic>Rapid thermal annealing</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnel, L.</creatorcontrib><creatorcontrib>Dekkers, H.F.W.</creatorcontrib><creatorcontrib>Gordon, I.</creatorcontrib><creatorcontrib>Van Gestel, D.</creatorcontrib><creatorcontrib>Van Nieuwenhuysen, K.</creatorcontrib><creatorcontrib>Beaucarne, G.</creatorcontrib><creatorcontrib>Poortmans, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnel, L.</au><au>Dekkers, H.F.W.</au><au>Gordon, I.</au><au>Van Gestel, D.</au><au>Van Nieuwenhuysen, K.</au><au>Beaucarne, G.</au><au>Poortmans, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2006-03-01</date><risdate>2006</risdate><volume>27</volume><issue>3</issue><spage>163</spage><epage>165</epage><pages>163-165</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>A considerable cost reduction in photovoltaics could be achieved if efficient solar cells could be made from thin polycrystalline-silicon (pc-Si) films. Although hydrogen passivation of pc-Si films is crucial to obtain good solar cells, the exact mechanism of hydrogen diffusion through pc-Si layers is not yet understood. In this letter, the influence of the junction and the grain size are investigated. We find that the presence of a p-n junction acts as a barrier for hydrogen diffusion in thin-film polysilicon solar cells. Therefore, pc-Si solar cells should preferably be passivated before junction formation. Furthermore, pc-Si layers with large grains retain less hydrogen after passivation than layers with small grains. This indicates that hydrogen atoms get mainly trapped at the grain boundaries.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2005.863566</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2006-03, Vol.27 (3), p.163-165 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_proquest_miscellaneous_896189484 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Atomic layer deposition Compound structure devices Costs Devices Diffusion Electronics Energy Exact sciences and technology Grain boundaries Grain size Grains Hydrogen Hydrogen storage Hydrogenation Natural energy Optoelectronic devices P-n junctions Passivation Photovoltaic cells Photovoltaic conversion polycrystalline-silicon (pc-Si) Rapid thermal annealing Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solar cells Solar cells. Photoelectrochemical cells Solar energy Thin films Transistors |
title | Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20hydrogenation%20mechanism%20by%20rapid%20thermal%20anneal%20of%20SiN:H%20in%20thin-film%20polycrystalline-silicon%20solar%20cells&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Carnel,%20L.&rft.date=2006-03-01&rft.volume=27&rft.issue=3&rft.spage=163&rft.epage=165&rft.pages=163-165&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2005.863566&rft_dat=%3Cproquest_ieee_%3E28107347%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-def52350a09ce9a36a6155dcb7e2a74640d2ee26ea30c43d0ac860ac1c2c81523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912094656&rft_id=info:pmid/&rft_ieee_id=1599467&rfr_iscdi=true |