Loading…

Performance and evaluation of nonasbestos organic brake friction composites with SiC particles as an abrasive

The effects of silicon carbide (SiC) as an abrasive on friction and wear performance of nonasbestos organic brake friction composites were studied using a tailored series of samples with 0—14.6 vol.% SiC. Friction coefficient of the friction composites containing SiC increased with increasing SiC co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of composite materials 2011-07, Vol.45 (15), p.1585-1593
Main Authors: Yun, Rongping, Martynkova, Simha G, Lu, Yafei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of silicon carbide (SiC) as an abrasive on friction and wear performance of nonasbestos organic brake friction composites were studied using a tailored series of samples with 0—14.6 vol.% SiC. Friction coefficient of the friction composites containing SiC increased with increasing SiC content; especially, the thermal fade of the friction material without SiC (SiC-0) improved. The specific wear rate of the friction composites containing SiC increased with SiC added up to 9.0 vol.% and then turned down, but the negative specific wear rate of SiC-0 obviously improved. With elevating friction temperature, an increase in both friction coefficient and wear of all the samples was observed. The extension evaluation method represents an effective tool to rank the friction composites. The ranking of five friction materials, described in the weighted average dependent degrees, was evaluated in the order from the best to the worst: SiC-3.4, SiC-14.6, SiC-5.6, SiC-0, and SiC-9.0. The formulation SiC-3.4 exhibited the best overall quality, and was recommended for future optimization of the brake friction composites. Microstructures of friction surfaces of the brake friction composites were characterized using scanning electron microscopy with energy dispersive X-ray microanalysis and electron microprobe analysis, and phase analysis was performed using X-ray powder diffraction methods. Formation and development of the friction layer were discussed. The friction layer, known as secondary plateaus, was easily formed and it grew among the adjacent or lined-up primary plateaus, which were helpful for improving the friction stability and wear resistance.
ISSN:0021-9983
1530-793X
DOI:10.1177/0021998310385025