Loading…
Absolute componentwise stability of interval hopfield neural networks
The componentwise stability is a special type of asymptotic stability which ensures the individual monitoring of each state-space variable of a dynamical system. For an interval Hopfield neural network (IHNN), sufficient conditions are provided to analyze the absolute componentwise stability with re...
Saved in:
Published in: | IEEE transactions on cybernetics 2005-02, Vol.35 (1), p.136-141 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The componentwise stability is a special type of asymptotic stability which ensures the individual monitoring of each state-space variable of a dynamical system. For an interval Hopfield neural network (IHNN), sufficient conditions are provided to analyze the absolute componentwise stability with respect to a class of activation functions (CAF). Both continuous- and discrete-time dynamics are considered. The conditions are formulated in terms of Hurwitz/Schur stability of a test matrix built from the information about the CAF and the interval matrices defining the IHNN. Some interesting results are derived as particular cases, which allow comparisons with several other works. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/TSMCB.2004.839246 |