Loading…
Spatial attrition modeling: Stability conditions for a 2 D + t FD formulation
A new general formulation for the spatial modeling of combat is presented, where the main drivers are movement attitudes and struggle evolution. This model in its simplest form is represented by a linear set of two coupled partial differential equations for two independent functions of the space and...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2011-06, Vol.61 (11), p.3246-3257 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new general formulation for the spatial modeling of combat is presented, where the main drivers are movement attitudes and struggle evolution. This model in its simplest form is represented by a linear set of two coupled partial differential equations for two independent functions of the space and time variables. Even though the problem has a linear shape, non-negative values for the two functions render this problem as nonlinear. In contrast with other attempts, this model ensures stability and theoretical consistency with the original Lanchester Equations, allowing for a better understanding and interpretation of the spatial modeling. As a numerical illustration a simple combat situation is developed. The model is calibrated to simulate different troop movement tactics that allow an invader force to provoke maximum damage at a minimum cost. The analysis provided here reviews the trade-off between spatial grid and time stepping for attrition cases and then extends it to a new method for guaranteeing good numerical behavior when the solution is expected to grow along the time variable. There is a wide variety of spatial problems that could benefit from this analysis. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2011.04.009 |