Loading…
On the Performance of Clustering in Hilbert Spaces
Based on randomly drawn vectors in a separable Hilbert space, one may construct a k-means clustering scheme by minimizing an empirical squared error. We investigate the risk of such a clustering scheme, defined as the expected squared distance of a random vector X from the set of cluster centers. Ou...
Saved in:
Published in: | IEEE transactions on information theory 2008-02, Vol.54 (2), p.781-790 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on randomly drawn vectors in a separable Hilbert space, one may construct a k-means clustering scheme by minimizing an empirical squared error. We investigate the risk of such a clustering scheme, defined as the expected squared distance of a random vector X from the set of cluster centers. Our main result states that, for an almost surely bounded , the expected excess clustering risk is O(¿1/n) . Since clustering in high (or even infinite)-dimensional spaces may lead to severe computational problems, we examine the properties of a dimension reduction strategy for clustering based on Johnson-Lindenstrauss-type random projections. Our results reflect a tradeoff between accuracy and computational complexity when one uses k-means clustering after random projection of the data to a low-dimensional space. We argue that random projections work better than other simplistic dimension reduction schemes. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2007.913516 |