Loading…

Maximum-likelihood estimation of circle parameters via convolution

The accurate fitting of a circle to noisy measurements of circumferential points is a much studied problem in the literature. In this paper, we present an interpretation of the maximum-likelihood estimator (MLE) and the Delogne-Kasa estimator (DKE) for circle-center and radius estimation in terms of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2006-04, Vol.15 (4), p.865-876
Main Authors: Zelniker, E.E., Clarkson, I.V.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accurate fitting of a circle to noisy measurements of circumferential points is a much studied problem in the literature. In this paper, we present an interpretation of the maximum-likelihood estimator (MLE) and the Delogne-Kasa estimator (DKE) for circle-center and radius estimation in terms of convolution on an image which is ideal in a certain sense. We use our convolution-based MLE approach to find good estimates for the parameters of a circle in digital images. In digital images, it is then possible to treat these estimates as preliminary estimates into various other numerical techniques which further refine them to achieve subpixel accuracy. We also investigate the relationship between the convolution of an ideal image with a "phase-coded kernel" (PCK) and the MLE. This is related to the "phase-coded annulus" which was introduced by Atherton and Kerbyson who proposed it as one of a number of new convolution kernels for estimating circle center and radius. We show that the PCK is an approximate MLE (AMLE). We compare our AMLE method to the MLE and the DKE as well as the Crame/spl acute/r-Rao Lower Bound in ideal images and in both real and synthetic digital images.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2005.863965