Loading…
Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures
This paper proposes an algorithm for the synthesis/optimization of microstructures based on an exact formula for the topological derivative of the macroscopic elasticity tensor and a level set domain representation. The macroscopic elasticity tensor is estimated by a standard multi‐scale constitutiv...
Saved in:
Published in: | International journal for numerical methods in engineering 2010-11, Vol.84 (6), p.733-756 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes an algorithm for the synthesis/optimization of microstructures based on an exact formula for the topological derivative of the macroscopic elasticity tensor and a level set domain representation. The macroscopic elasticity tensor is estimated by a standard multi‐scale constitutive theory where the strain and stress tensors are volume averages of their microscopic counterparts over a representative volume element. The algorithm is of simple computational implementation. In particular, it does not require artificial algorithmic parameters or strategies. This is in sharp contrast with existing microstructural optimization procedures and follows as a natural consequence of the use of the topological derivative concept. This concept provides the correct mathematical framework to treat topology changes such as those characterizing microstuctural optimization problems. The effectiveness of the proposed methodology is illustrated in a set of finite element‐based numerical examples.Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 1097-0207 |
DOI: | 10.1002/nme.2922 |