Loading…
Robust adaptive matched filtering using the FRACTA algorithm
An effective method is developed for selecting sample snapshots for the training data used to compute the adaptive weights for an adaptive match filter (AMF); specifically a space/time adaptive processing (STAP) airborne radar configuration is considered. In addition, a new systematic robust adaptiv...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2004-07, Vol.40 (3), p.929-945 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An effective method is developed for selecting sample snapshots for the training data used to compute the adaptive weights for an adaptive match filter (AMF); specifically a space/time adaptive processing (STAP) airborne radar configuration is considered. In addition, a new systematic robust adaptive algorithm is presented and evaluated against interference scenarios consisting of jamming, nonhomogeneous airborne clutter (generated by the Research Laboratory STAP (RLSTAP) or knowledge-aided sensor signal processing and expert reasoning (KASSPER) high-fidelity clutter models or using the multi-channel airborne radar measurement (MCARM) clutter data base), internal system noise, and outliers (which could take the form of targets themselves). The new algorithm arises from empirical studies of several combinations of performance metrics and processing configurations. For culling the training data, the generalized inner product (GIP) and adaptive power residue (APR) are examined. In addition two types of data processing methods are considered and evaluated: sliding window processing (SWP) and concurrent block processing (CBP). For SWP, a distinct adaptive weight is calculated for each cell-under-test (CUT) in a contiguous set of range cells. For one configuration of CBP, two distinct weights are calculated for a contiguous set of CUTs. For the CBP, the CUTs are in the initial training data and there are no guard cells associated with the CUT as there would be for SWP. Initial studies indicate that the combination of using the fast maximum likelihood (FML) algorithm, reiterative censoring, the APR metric, CBP, the two-weight method, and the adaptive coherence estimation (ACE) metric (we call this the FRACTA algorithm) provides a basis for effective detection of targets in nonhomogeneous interference. For the KASSPER data, FRACTA detects 154 out of 268 targets with one false alarm (P/sub F//spl ap/3/spl times/10/sup -5/) whereas the FML algorithm with SWP detects 11 with one false alarm. The clarvoyant processor (where each range cell's covariance matrix is known) detects 192 targets with one false alarm. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2004.1337465 |