Loading…
Physics-based compact model of nanoscale MOSFETs-Part I: transition from drift-diffusion to ballistic transport
In this paper, we present a physics-based analytical model for nanoscale MOSFETs that allows us to seamlessly cover the whole range of regimes from drift-diffusion (DD) to ballistic (B) transport, taking into account quantum confinement in the channel. In Part I we focus on MOSFETs with ultrathin bo...
Saved in:
Published in: | IEEE transactions on electron devices 2005-08, Vol.52 (8), p.1795-1801 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present a physics-based analytical model for nanoscale MOSFETs that allows us to seamlessly cover the whole range of regimes from drift-diffusion (DD) to ballistic (B) transport, taking into account quantum confinement in the channel. In Part I we focus on MOSFETs with ultrathin bodies, in which quantum confinement is structural rather than field-induced, and investigate in detail an analytical description of the transition from drift-diffusion to B transport based on the Bu/spl uml/ttiker approach to dissipative transport. We first start from the derivation of a closed form analytical expression of the Natori model for B MOSFETs, and show that a MOSFET with finite scattering length can be described as a suitable chain of B MOSFETs. Then, we are able to compact the behavior of the B chain in a simple analytical model. In the derivation, we also find a similarity between the B limit in the chain and the saturation velocity effect, that leads us to propose an alternative implementation of the saturation velocity effect in compact models. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2005.851827 |