Loading…
Proteolysis, protein oxidation and protease activity in dry-cured Xuanwei ham during the salting stages
Summary Twenty‐four experimental dry‐cured Xuanwei hams were salted using a standard method for 90 days. The proteolysis, protein oxidation and protease activities in biceps femoris (BF) and semimembranoesus (SM) muscles of dry‐cured Xuanwei ham were investigated during the salting phase. At the end...
Saved in:
Published in: | International journal of food science & technology 2011-07, Vol.46 (7), p.1370-1377 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Twenty‐four experimental dry‐cured Xuanwei hams were salted using a standard method for 90 days. The proteolysis, protein oxidation and protease activities in biceps femoris (BF) and semimembranoesus (SM) muscles of dry‐cured Xuanwei ham were investigated during the salting phase. At the end of salting, the salt content increased to 35.2 g kg−1 muscle in BF and 54.2 g kg−1 muscle in SM. During the salting stage, salt soluble proteins were degraded mainly into water soluble proteins that were further broken down to peptides with molecular weights mostly greater than 1 kDa. Although large amounts of smaller peptides and free amino acids were generated, especially when the hams were aged. The carbonyl contents were increased but lower than 1.57 nmol mg−1 proteins in muscles during the salting stage. The cathepsin B, dipeptidyl peptidase I (DPP I), alanyl (AAP), arginyl (RAP) and leucyl (LAP) aminopeptidase all remained active while salt content strongly inhibited cathepsin L and DPP IV in the first 90 days. The results suggested that the salting process promoted the hydrolysis of proteins, and increased the muscle protein oxidation at a slower rate. |
---|---|
ISSN: | 0950-5423 1365-2621 |
DOI: | 10.1111/j.1365-2621.2011.02626.x |