Loading…

CFD simulation study to investigate the risk from hydrogen vehicles in tunnels

When introducing hydrogen-fuelled vehicles, an evaluation of the potential change in risk level should be performed. It is widely accepted that outdoor accidental releases of hydrogen from single vehicles will disperse quickly, and not lead to any significant explosion hazard. The situation may be d...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2009-07, Vol.34 (14), p.5875-5886
Main Authors: Middha, Prankul, Hansen, Olav R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When introducing hydrogen-fuelled vehicles, an evaluation of the potential change in risk level should be performed. It is widely accepted that outdoor accidental releases of hydrogen from single vehicles will disperse quickly, and not lead to any significant explosion hazard. The situation may be different for more confined situations such as parking garages, workshops, or tunnels. Experiments and computer modelling are both important for understanding the situation better. This article reports a simulation study to examine what, if any, is the explosion risk associated with hydrogen vehicles in tunnels. Its aim was to further our understanding of the phenomena surrounding hydrogen releases and combustion inside road tunnels, and furthermore to demonstrate how a risk assessment methodology developed for the offshore industry could be applied to the current task. This work is contributing to the EU Sixth Framework (Network of Excellence) project HySafe, aiding the overall understanding that is also being collected from previous studies, new experiments and other modelling activities. Releases from hydrogen cars (containing 700 bar gas tanks releasing either upwards or downwards or liquid hydrogen tanks releasing only upwards) and buses (containing 350 bar gas tanks releasing upwards) for two different tunnel layouts and a range of longitudinal ventilation conditions have been studied. The largest release modelled was 20 kg H 2 from four cylinders in a bus (via one vent) in 50 s, with an initial release rate around 1000 g/s. Comparisons with natural gas (CNG) fuelled vehicles have also been performed. The study suggests that for hydrogen vehicles a typical worst-case risk assessment approach assuming the full gas inventory being mixed homogeneously at stoichiometry could lead to severe explosion loads. However, a more extensive study with more realistic release scenarios reduced the predicted hazard significantly. The flammable gas cloud sizes were still large for some of the scenarios, but if the actual reactivity of the predicted clouds is taken into account, moderate worst-case explosion pressures are predicted. As a final step of the risk assessment approach, a probabilistic QRA study is performed in which probabilities are assigned to different scenarios, time dependent ignition modelling is applied, and equivalent stoichiometric gas clouds are used to translate reactivity of dispersed non-homogeneous clouds. The probabilistic risk assessment study is
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2009.02.004