Loading…

On linear-parameter-varying (LPV) slip-controller design for two-wheeled vehicles

This paper describes the application of linear‐parameter‐varying (LPV) control design techniques to the problem of slip control for two‐wheeled vehicles. A nonlinear multi‐body motorcycle simulator is employed to derive a control‐oriented dynamic model. It is shown that, in order to devise a robust...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control 2009-08, Vol.19 (12), p.1313-1336
Main Authors: Corno, Matteo, Savaresi, Sergio M., Balas, Gary J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes the application of linear‐parameter‐varying (LPV) control design techniques to the problem of slip control for two‐wheeled vehicles. A nonlinear multi‐body motorcycle simulator is employed to derive a control‐oriented dynamic model. It is shown that, in order to devise a robust controller with good performance, it is necessary to take into account the dependence of the model on the velocity and on the wheel slip. This dependence is modeled via an LPV system constructed from Jacobian linearizations at different velocities and slip values. The control problem is formulated as a model‐matching control problem within the LPV framework; a specific modification of the LPV control synthesis algorithm is proposed to alleviate controller interpolation problems. Linear and nonlinear simulations indicate that the synthesized controller achieves the required robustness and performance. Copyright © 2008 John Wiley & Sons, Ltd.
ISSN:1049-8923
1099-1239
1099-1239
DOI:10.1002/rnc.1381