Loading…

Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production

Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8–2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studie...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2010-04, Vol.35 (8), p.3389-3400
Main Authors: Lakshmidevi, Rajendran, Muthukumar, Karuppan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8–2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studied. The optimum temperature for the growth of T. reesei was found to be around 29 °C. The enzyme activity of 2.5 FPU/ml was found to produce about 22 g/l of total sugars consisting mainly of glucose, xylose and arabinose. Relevant kinetic parameters with respect to sugars production were estimated using two fraction model. The enzymatic hydrolysate was used for the biohydrogen production using E. aerogenes. The growth data obtained for E. aerogenes were fitted well with Monod and Logistic equations. The maximum hydrogen yield of 2.03 mol H 2/mol sugar and specific hydrogen production rate of 225 mmol of H 2/g cell/h were obtained with an initial concentration of 22 g/l of total sugars. The colour and COD of effluent was also decreased significantly during the production of hydrogen. The results showed that the paper and pulp industry effluent can be used as a substrate for biohydrogen production.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2009.12.165