Loading…
An efficient algorithm for the multivariable Adomian polynomials
In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, …...
Saved in:
Published in: | Applied mathematics and computation 2010-11, Vol.217 (6), p.2456-2467 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions
u
1,
u
2, …
,
u
m
about the initial solution components
u
1,0,
u
2,0, …
,
u
m,0
; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2010.07.046 |