Loading…
An efficient algorithm for the multivariable Adomian polynomials
In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, …...
Saved in:
Published in: | Applied mathematics and computation 2010-11, Vol.217 (6), p.2456-2467 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3 |
container_end_page | 2467 |
container_issue | 6 |
container_start_page | 2456 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Duan, Jun-Sheng |
description | In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions
u
1,
u
2, …
,
u
m
about the initial solution components
u
1,0,
u
2,0, …
,
u
m,0
; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed. |
doi_str_mv | 10.1016/j.amc.2010.07.046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901691145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310007915</els_id><sourcerecordid>901691145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlgjglrGPHTsSFquIlVeICZ8tx1tRVHsVOK_Xf46gVR06zK83Maj9CbilkFKh42GS6M1kOcQeZARdnZEZLydJC8OqczAAqkTIAdkmuQtgAgBSUz8jTok_QWmcc9mOi2-_Bu3HdJXbwybjGpNu1o9tr73TdYrJohs7pPtkO7aGfxjZckwsbBW9OOidfL8-fy7d09fH6vlysUsOKakxrbq0QZQOsyhtbs0KwsqSMFoiMQ82NqSmWTBZGMCnysgZjZZHTBlBjjg2bk_tj79YPPzsMo-pcMNi2usdhF1QVKVSU8iI66dFp_BCCR6u23nXaHxQFNcFSGxVhqQmWAqkirJi5O7XrYHRrve6NC3_BnFNZUsmj7_How_jq3qFXYSJnsHEezaiawf1z5RfDh36h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901691145</pqid></control><display><type>article</type><title>An efficient algorithm for the multivariable Adomian polynomials</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Duan, Jun-Sheng</creator><creatorcontrib>Duan, Jun-Sheng</creatorcontrib><description>In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions
u
1,
u
2, …
,
u
m
about the initial solution components
u
1,0,
u
2,0, …
,
u
m,0
; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.07.046</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Acceleration of convergence ; Adomian decomposition method ; Adomian polynomials ; Algorithms ; Derivatives ; Difference and functional equations, recurrence relations ; Differential equation ; Differential equations ; Exact sciences and technology ; Functions of a complex variable ; Mathematical analysis ; Mathematical models ; Mathematics ; Matrices ; Matrix methods ; Multivariable ; Multivariable function ; Nonlinear operator ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sciences and techniques of general use</subject><ispartof>Applied mathematics and computation, 2010-11, Vol.217 (6), p.2456-2467</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3</citedby><cites>FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300310007915$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24178174$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Jun-Sheng</creatorcontrib><title>An efficient algorithm for the multivariable Adomian polynomials</title><title>Applied mathematics and computation</title><description>In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions
u
1,
u
2, …
,
u
m
about the initial solution components
u
1,0,
u
2,0, …
,
u
m,0
; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.</description><subject>Acceleration of convergence</subject><subject>Adomian decomposition method</subject><subject>Adomian polynomials</subject><subject>Algorithms</subject><subject>Derivatives</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Differential equation</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Functions of a complex variable</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Multivariable</subject><subject>Multivariable function</subject><subject>Nonlinear operator</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlgjglrGPHTsSFquIlVeICZ8tx1tRVHsVOK_Xf46gVR06zK83Maj9CbilkFKh42GS6M1kOcQeZARdnZEZLydJC8OqczAAqkTIAdkmuQtgAgBSUz8jTok_QWmcc9mOi2-_Bu3HdJXbwybjGpNu1o9tr73TdYrJohs7pPtkO7aGfxjZckwsbBW9OOidfL8-fy7d09fH6vlysUsOKakxrbq0QZQOsyhtbs0KwsqSMFoiMQ82NqSmWTBZGMCnysgZjZZHTBlBjjg2bk_tj79YPPzsMo-pcMNi2usdhF1QVKVSU8iI66dFp_BCCR6u23nXaHxQFNcFSGxVhqQmWAqkirJi5O7XrYHRrve6NC3_BnFNZUsmj7_How_jq3qFXYSJnsHEezaiawf1z5RfDh36h</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Duan, Jun-Sheng</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101115</creationdate><title>An efficient algorithm for the multivariable Adomian polynomials</title><author>Duan, Jun-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration of convergence</topic><topic>Adomian decomposition method</topic><topic>Adomian polynomials</topic><topic>Algorithms</topic><topic>Derivatives</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Differential equation</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Functions of a complex variable</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Multivariable</topic><topic>Multivariable function</topic><topic>Nonlinear operator</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Jun-Sheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Jun-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient algorithm for the multivariable Adomian polynomials</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-11-15</date><risdate>2010</risdate><volume>217</volume><issue>6</issue><spage>2456</spage><epage>2467</epage><pages>2456-2467</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions
u
1,
u
2, …
,
u
m
about the initial solution components
u
1,0,
u
2,0, …
,
u
m,0
; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.07.046</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2010-11, Vol.217 (6), p.2456-2467 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_901691145 |
source | ScienceDirect Freedom Collection 2022-2024; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Acceleration of convergence Adomian decomposition method Adomian polynomials Algorithms Derivatives Difference and functional equations, recurrence relations Differential equation Differential equations Exact sciences and technology Functions of a complex variable Mathematical analysis Mathematical models Mathematics Matrices Matrix methods Multivariable Multivariable function Nonlinear operator Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Sciences and techniques of general use |
title | An efficient algorithm for the multivariable Adomian polynomials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20algorithm%20for%20the%20multivariable%20Adomian%20polynomials&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Duan,%20Jun-Sheng&rft.date=2010-11-15&rft.volume=217&rft.issue=6&rft.spage=2456&rft.epage=2467&rft.pages=2456-2467&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.07.046&rft_dat=%3Cproquest_cross%3E901691145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901691145&rft_id=info:pmid/&rfr_iscdi=true |