Loading…

An efficient algorithm for the multivariable Adomian polynomials

In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, …...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2010-11, Vol.217 (6), p.2456-2467
Main Author: Duan, Jun-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3
cites cdi_FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3
container_end_page 2467
container_issue 6
container_start_page 2456
container_title Applied mathematics and computation
container_volume 217
creator Duan, Jun-Sheng
description In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, … , u m,0 ; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.
doi_str_mv 10.1016/j.amc.2010.07.046
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901691145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310007915</els_id><sourcerecordid>901691145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlgjglrGPHTsSFquIlVeICZ8tx1tRVHsVOK_Xf46gVR06zK83Maj9CbilkFKh42GS6M1kOcQeZARdnZEZLydJC8OqczAAqkTIAdkmuQtgAgBSUz8jTok_QWmcc9mOi2-_Bu3HdJXbwybjGpNu1o9tr73TdYrJohs7pPtkO7aGfxjZckwsbBW9OOidfL8-fy7d09fH6vlysUsOKakxrbq0QZQOsyhtbs0KwsqSMFoiMQ82NqSmWTBZGMCnysgZjZZHTBlBjjg2bk_tj79YPPzsMo-pcMNi2usdhF1QVKVSU8iI66dFp_BCCR6u23nXaHxQFNcFSGxVhqQmWAqkirJi5O7XrYHRrve6NC3_BnFNZUsmj7_How_jq3qFXYSJnsHEezaiawf1z5RfDh36h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901691145</pqid></control><display><type>article</type><title>An efficient algorithm for the multivariable Adomian polynomials</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Duan, Jun-Sheng</creator><creatorcontrib>Duan, Jun-Sheng</creatorcontrib><description>In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, … , u m,0 ; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.07.046</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Acceleration of convergence ; Adomian decomposition method ; Adomian polynomials ; Algorithms ; Derivatives ; Difference and functional equations, recurrence relations ; Differential equation ; Differential equations ; Exact sciences and technology ; Functions of a complex variable ; Mathematical analysis ; Mathematical models ; Mathematics ; Matrices ; Matrix methods ; Multivariable ; Multivariable function ; Nonlinear operator ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sciences and techniques of general use</subject><ispartof>Applied mathematics and computation, 2010-11, Vol.217 (6), p.2456-2467</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3</citedby><cites>FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300310007915$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24178174$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Jun-Sheng</creatorcontrib><title>An efficient algorithm for the multivariable Adomian polynomials</title><title>Applied mathematics and computation</title><description>In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, … , u m,0 ; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.</description><subject>Acceleration of convergence</subject><subject>Adomian decomposition method</subject><subject>Adomian polynomials</subject><subject>Algorithms</subject><subject>Derivatives</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Differential equation</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Functions of a complex variable</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Multivariable</subject><subject>Multivariable function</subject><subject>Nonlinear operator</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlgjglrGPHTsSFquIlVeICZ8tx1tRVHsVOK_Xf46gVR06zK83Maj9CbilkFKh42GS6M1kOcQeZARdnZEZLydJC8OqczAAqkTIAdkmuQtgAgBSUz8jTok_QWmcc9mOi2-_Bu3HdJXbwybjGpNu1o9tr73TdYrJohs7pPtkO7aGfxjZckwsbBW9OOidfL8-fy7d09fH6vlysUsOKakxrbq0QZQOsyhtbs0KwsqSMFoiMQ82NqSmWTBZGMCnysgZjZZHTBlBjjg2bk_tj79YPPzsMo-pcMNi2usdhF1QVKVSU8iI66dFp_BCCR6u23nXaHxQFNcFSGxVhqQmWAqkirJi5O7XrYHRrve6NC3_BnFNZUsmj7_How_jq3qFXYSJnsHEezaiawf1z5RfDh36h</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Duan, Jun-Sheng</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101115</creationdate><title>An efficient algorithm for the multivariable Adomian polynomials</title><author>Duan, Jun-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration of convergence</topic><topic>Adomian decomposition method</topic><topic>Adomian polynomials</topic><topic>Algorithms</topic><topic>Derivatives</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Differential equation</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Functions of a complex variable</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Multivariable</topic><topic>Multivariable function</topic><topic>Nonlinear operator</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Jun-Sheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Jun-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient algorithm for the multivariable Adomian polynomials</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-11-15</date><risdate>2010</risdate><volume>217</volume><issue>6</issue><spage>2456</spage><epage>2467</epage><pages>2456-2467</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this article the sum of the series of multivariable Adomian polynomials is demonstrated to be identical to a rearrangement of the multivariable Taylor expansion of an analytic function of the decomposition series of solutions u 1, u 2, … , u m about the initial solution components u 1,0, u 2,0, … , u m,0 ; of course the multivariable Adomian polynomials were developed and are eminently practical for the solution of coupled nonlinear differential equations. The index matrices and their simplified forms of the multivariable Adomian polynomials are introduced. We obtain the recurrence relations for the simplified index matrices, which provide a convenient algorithm for rapid generation of the multivariable Adomian polynomials. Another alternative algorithm for term recurrence is established. In these algorithms recurrence processes do not require complicated operations such as parametrization, expanding and regrouping, derivatives, etc. as practiced in prior art. The MATHEMATICA program generating the Adomian polynomials based on the algorithm in this article is designed.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.07.046</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-11, Vol.217 (6), p.2456-2467
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_901691145
source ScienceDirect Freedom Collection 2022-2024; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Acceleration of convergence
Adomian decomposition method
Adomian polynomials
Algorithms
Derivatives
Difference and functional equations, recurrence relations
Differential equation
Differential equations
Exact sciences and technology
Functions of a complex variable
Mathematical analysis
Mathematical models
Mathematics
Matrices
Matrix methods
Multivariable
Multivariable function
Nonlinear operator
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
title An efficient algorithm for the multivariable Adomian polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20algorithm%20for%20the%20multivariable%20Adomian%20polynomials&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Duan,%20Jun-Sheng&rft.date=2010-11-15&rft.volume=217&rft.issue=6&rft.spage=2456&rft.epage=2467&rft.pages=2456-2467&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.07.046&rft_dat=%3Cproquest_cross%3E901691145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-b4ff668d0392dfb3563881315ee340b4ccb1e8375c637628b0cf7521d0eae2ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901691145&rft_id=info:pmid/&rfr_iscdi=true