Loading…

Theoretical and experimental analysis of 1.3-μm InGaAsN/GaAs lasers

We present a comprehensive theoretical and experimental analysis of 1.3- mu m InGaAsN/GaAs lasers. After introducing the 10-band k . p Hamiltonian which predicts transition energies observed experimentally, we employ it to investigate laser properties of ideal and real InGaAsN/GaAs laser devices. Ou...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics 2003-09, Vol.9 (5), p.1228-1238
Main Authors: Tomic, S., O'Reilly, E.P., Fehse, R., Sweeney, S.J., Adams, A.R., Andreev, A.D., Choulis, S.A., Hosea, T.J.C., Riechert, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a comprehensive theoretical and experimental analysis of 1.3- mu m InGaAsN/GaAs lasers. After introducing the 10-band k . p Hamiltonian which predicts transition energies observed experimentally, we employ it to investigate laser properties of ideal and real InGaAsN/GaAs laser devices. Our calculations show that the addition of N reduces the peak gain and differential gain at fixed carrier density, although the gain saturation value and the peak gain as a function of radiative current density are largely unchanged due to the incorporation of N. The gain characteristics are optimized by including the minimum amount of nitrogen necessary to prevent strain relaxation at the given well thickness. The measured spontaneous emission and gain characteristics of real devices are well described by the theoretical model. Our analysis shows that the threshold current is dominated by nonradiative, defect-related recombination. Elimination of these losses would enable laser characteristics comparable with the best InGaAsP/InP-based lasers with the added advantages provided by the GaAs system that are important for vertical integration.
ISSN:1077-260X
DOI:10.1109/JSTQE.2003.819516