Loading…
Paraxial gas-cell focusing of relativistic electron beams for radiography
A description of the underlying physics governing the operation of pulsed-power driven, gas-filled, paraxial diodes is presented. Gas-filled focusing cells are routinely used to transport high energy density electron beams for use in flash X-ray radiography experiments. The paraxial diode acts as a...
Saved in:
Published in: | IEEE transactions on plasma science 2005-04, Vol.33 (2), p.704-711 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A description of the underlying physics governing the operation of pulsed-power driven, gas-filled, paraxial diodes is presented. Gas-filled focusing cells are routinely used to transport high energy density electron beams for use in flash X-ray radiography experiments. The paraxial diode acts as a 1/4 betatron focusing element with a focal length F proportional to the square root of the beam energy and inversely proportional to the square root of the net current in the gas cell F/spl prop/(/spl gamma//I/sub net/)/sup 1/2/. Particle-in-cell simulations demonstrate that the time integrated radiation spot is determined both by focal sweeping due to time varying net currents and by finite beam emittance. The calculated radiation focal plane, spot, and dose are compared to data obtained by the Atomic Weapons Establishment, U.K., from a variety of experimental configurations and demonstrate good agreement between simulation and experiment. Suggestions to improve the focal properties of the diode are presented. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2005.844532 |