Loading…
Asymmetric periodic solutions of the averaged Hill problem with allowance for a planet’s oblateness
We consider asymmetric periodic solutions of the double-averaged Hill problem by taking into account oblateness of the central planet. They are generated by steady-state solutions, which are stable in the linear approximation and correspond to satellite orbits orthogonal to the line of intersection...
Saved in:
Published in: | Astronomy letters 2000-05, Vol.26 (5), p.331-337 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider asymmetric periodic solutions of the double-averaged Hill problem by taking into account oblateness of the central planet. They are generated by steady-state solutions, which are stable in the linear approximation and correspond to satellite orbits orthogonal to the line of intersection of the planet's equatorial plane with the orbital plane of a disturbing point. For two model systems [(Sun+Moon)-Earth-satellite] and [Sun-Uranus-satellite], these periodic solutions are numerically continued from a small vicinity of the equilibrium position. The results are illustrated by projecting the solutions onto the (pericenter argument-eccentricity) and (longitude-inclination) planes. |
---|---|
ISSN: | 1063-7737 1562-6873 |
DOI: | 10.1134/1.20399 |