Loading…

Elucidation of a basic protein, glyceraldehyde-3-phosphate dehydrogenase, as a contributing factor to raise Mg-ATPase activity of myofibrils during meat conditioning

We investigated the factor which increased the maximum value of the Mg-ATPase activity of myofibrils existing at low KCl concentrations during meat conditioning. On the treatment of myofibrils with the solution extracted with the buffer of pH 7.2 from muscle, the Mg-ATPase activity in the presence o...

Full description

Saved in:
Bibliographic Details
Published in:Meat science 2000-12, Vol.56 (4), p.369-377
Main Authors: Matsuishi, Masanori, Okitani, Akihiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the factor which increased the maximum value of the Mg-ATPase activity of myofibrils existing at low KCl concentrations during meat conditioning. On the treatment of myofibrils with the solution extracted with the buffer of pH 7.2 from muscle, the Mg-ATPase activity in the presence of 0–0.15 M KCl increased time-dependently. This change was most remarkable in the range of pH 5.6–7.0. Trypsin treatment of the extract abolished such effect, suggesting that the responsible factors were proteins. The fractionation of the extract with isoelectric focusing demonstrated that the factors were basic proteins (pI 8.3–9.6). The treatment of myofibrils with those basic proteins under various conditions suggested that the time-dependent adhesion of those basic proteins, through a denaturation at around pH 5.5, to myofibrils was assumed to raise the Mg-ATPase activity. Analysis of myofibrils prepared from rabbit muscles stored at 0°C for 12 days postmortem showed the appearance of the 35,000 Da protein, accompanied the increase in the Mg-ATPase activity. Therefore, the adhesion of this protein to myofibrils in situ probably caused the increase in the Mg-ATPase activity. Successive treatment with the basic protein and the crude cathepsin increased the dependency of the Mg-ATPase activity on KCl concentrations and the maximum value of the Mg-ATPase activity. Therefore, the coordinate action of a basic 35,000 Da protein and cathepsins was presumed to induce the changes in the Mg-ATPase activity of myofibrils during meat conditioning. The basic protein was concluded to be glyceraldehyde-3-phosphate dehydrogenase (its subunit molecular mass: 35,000 Da), since the incubation of myofibrils with its commercial preparation raised the Mg-ATPase activity of myofibrils.
ISSN:0309-1740
1873-4138
DOI:10.1016/S0309-1740(00)00064-4