Loading…
Pork tenderness estimation by taste panel, Warner–Bratzler shear force and on-line methods
The extent to which modification of Warner–Bratzler shear force (WBSF) determinations, relating to storage and preparation of the meat, aperture of the V-shaped cutting blade and shearing velocity, improve the relationship with sensory tenderness perception of pork was studied. Additionally four on-...
Saved in:
Published in: | Meat science 1999-12, Vol.53 (4), p.259-267 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The extent to which modification of Warner–Bratzler shear force (WBSF) determinations, relating to storage and preparation of the meat, aperture of the V-shaped cutting blade and shearing velocity, improve the relationship with sensory tenderness perception of pork was studied. Additionally four on-line methods: pH1, FOP1 (light scattering), PQM1 (conductivity) and DDLT (Double Density Light Transmission), were evaluated for their ability to predict tenderness. Sensory tenderness evaluation was conducted on 120 frozen (at −18°C for several months) samples of
m. longissimus thoracis et lumborum. After overnight thawing, the meat was grilled to an internal temperature of 74°C and scored on an eight-point scale, from extremely tough to extremely tender. The standard WBSF procedure (protocol A) consisted of heating fresh meat samples (stored for 48 h at 4°C post slaughter) at 75°C for 50 min, cooling in cold tap water for 40 min, taking cylindrical cores parallel to the fibre direction, and shearing at a velocity of 200 mm/min with a blade aperture of 60°. For the prediction of sensory tenderness, the WBSF standard procedure (protocol A) showed the lowest variance (
R
2=15%) and the highest standard error of the estimate (SEE=0.97 N) compared to the other WBSF protocols. A decrease in shearing velocity, from 200 to 100 mm/min and, a replacement of the cutting blade with an aperture of 60° by one with an aperture of 30° led to improvements of
R
2 (respectively, 19% vs. 13% and 47% vs. 23%) and SEE (respectively, 0.93 N vs. 0.97 N and 0.80 N vs. 0.97 N) and thus were better predictors of tenderness. A blade aperture of 30° instead of 60° also led to considerably lower WBSF values (22.1 N vs. 30.0 N). Freezing, frozen storage and thawing of the meat, prior to WBSF measurement, resulted in higher shear force values (32.7 N vs. 28.7 N) and a better prediction of tenderness,
R
2 (25% vs. 15%) and SEE (0.94 N vs. 1.00 N). Furthermore, preparing the frozen stored meat for WBSF determination in the same way as for the sensory evaluation, namely grilling instead of boiling, led to higher WBSF values (35.5 N vs. 32.7 N) and a further improvement in the prediction of tenderness (
R
2=31% vs. 25% and SEE=0.90 N vs. 0.94 N). From the on-line instruments: pH, FOP and PQM, pH was best in predicting tenderness. Linear regression with tenderness as dependent variable and the on-line techniques as independent variables revealed the following
R
2: 16, 8, 8 and 10% and SEE: 0.96, |
---|---|
ISSN: | 0309-1740 1873-4138 |
DOI: | 10.1016/S0309-1740(99)00067-4 |