Loading…
Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation
Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the...
Saved in:
Published in: | IEEE transactions on automation science and engineering 2008-04, Vol.5 (2), p.197-206 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383 |
container_end_page | 206 |
container_issue | 2 |
container_start_page | 197 |
container_title | IEEE transactions on automation science and engineering |
container_volume | 5 |
creator | Mokaberi, B. Requicha, A.A.G. |
description | Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail. |
doi_str_mv | 10.1109/TASE.2007.895008 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_903623348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358078</ieee_id><sourcerecordid>34404592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhhdRsH7cBS-LoJ62Tr7a5FhKa4Wqh9ZzSHcnsGWbrEl78N-btaUHD3qawDzvC5Mny24I9AkB9bQcLSZ9CjDsSyUA5EnWI0LIgg0lO-3eXBRCCXGeXcS4BqBcKuhlk7HftOii2dbe5d7mi9I4hyEfB8Q2N67KZ19xiwFjHXPrQz6avuZvxvmNcXW7a36CV9mZNU3E68O8zD6mk-V4Vszfn1_Go3lRCiq3BRecqgrEgFFJVkowPqSVoVKtFDJrK1IxVMZSlmglBTU8rQ0xlhElkEl2mT3ue9vgP3cYt3pTxxKbxjj0u6gVsAFljP9PSgmDhHFI5MOfJOMcuFA0gXe_wLXfBZfu1RRIahrSQYJgD5XBxxjQ6jbUGxO-NAHdidKdKN2J0ntRKXJ_6DWxNI0NxpV1POYoMJl-qqu-3XM1Ih7XnAkJyfE3UeaY7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201403726</pqid></control><display><type>article</type><title>Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation</title><source>IEEE Xplore (Online service)</source><creator>Mokaberi, B. ; Requicha, A.A.G.</creator><creatorcontrib>Mokaberi, B. ; Requicha, A.A.G.</creatorcontrib><description>Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2007.895008</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Atomic force microscopes (AFMs) ; Atomic force microscopy ; automatic nanomanipulation ; Cartography ; Compensation ; Computer science; control theory; systems ; Control theory. Systems ; Creep ; Creep (materials) ; Exact sciences and technology ; Hysteresis ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Inverse ; Inverse problems ; Laboratories ; Mathematical models ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Micromechanical devices and systems ; Modelling and identification ; nano manipulation ; nanolithography ; Nanomaterials ; Nanoparticles ; nanorobotics ; Nanostructure ; nonlinearities ; Physics ; Precision engineering, watch making ; Prototypes ; Robot sensing systems ; Robotics ; Robotics and automation ; Scanners ; Scanning electron microscopy ; scanning probe microscopes (SPMs) ; Sensor arrays ; spatial uncertainty ; Uncertainty</subject><ispartof>IEEE transactions on automation science and engineering, 2008-04, Vol.5 (2), p.197-206</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383</citedby><cites>FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20385346$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mokaberi, B.</creatorcontrib><creatorcontrib>Requicha, A.A.G.</creatorcontrib><title>Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail.</description><subject>Applied sciences</subject><subject>Atomic force microscopes (AFMs)</subject><subject>Atomic force microscopy</subject><subject>automatic nanomanipulation</subject><subject>Cartography</subject><subject>Compensation</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Creep</subject><subject>Creep (materials)</subject><subject>Exact sciences and technology</subject><subject>Hysteresis</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Inverse</subject><subject>Inverse problems</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Micromechanical devices and systems</subject><subject>Modelling and identification</subject><subject>nano manipulation</subject><subject>nanolithography</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>nanorobotics</subject><subject>Nanostructure</subject><subject>nonlinearities</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Prototypes</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robotics and automation</subject><subject>Scanners</subject><subject>Scanning electron microscopy</subject><subject>scanning probe microscopes (SPMs)</subject><subject>Sensor arrays</subject><subject>spatial uncertainty</subject><subject>Uncertainty</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhhdRsH7cBS-LoJ62Tr7a5FhKa4Wqh9ZzSHcnsGWbrEl78N-btaUHD3qawDzvC5Mny24I9AkB9bQcLSZ9CjDsSyUA5EnWI0LIgg0lO-3eXBRCCXGeXcS4BqBcKuhlk7HftOii2dbe5d7mi9I4hyEfB8Q2N67KZ19xiwFjHXPrQz6avuZvxvmNcXW7a36CV9mZNU3E68O8zD6mk-V4Vszfn1_Go3lRCiq3BRecqgrEgFFJVkowPqSVoVKtFDJrK1IxVMZSlmglBTU8rQ0xlhElkEl2mT3ue9vgP3cYt3pTxxKbxjj0u6gVsAFljP9PSgmDhHFI5MOfJOMcuFA0gXe_wLXfBZfu1RRIahrSQYJgD5XBxxjQ6jbUGxO-NAHdidKdKN2J0ntRKXJ_6DWxNI0NxpV1POYoMJl-qqu-3XM1Ih7XnAkJyfE3UeaY7w</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Mokaberi, B.</creator><creator>Requicha, A.A.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080401</creationdate><title>Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation</title><author>Mokaberi, B. ; Requicha, A.A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Atomic force microscopes (AFMs)</topic><topic>Atomic force microscopy</topic><topic>automatic nanomanipulation</topic><topic>Cartography</topic><topic>Compensation</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Creep</topic><topic>Creep (materials)</topic><topic>Exact sciences and technology</topic><topic>Hysteresis</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Inverse</topic><topic>Inverse problems</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Micromechanical devices and systems</topic><topic>Modelling and identification</topic><topic>nano manipulation</topic><topic>nanolithography</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>nanorobotics</topic><topic>Nanostructure</topic><topic>nonlinearities</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Prototypes</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robotics and automation</topic><topic>Scanners</topic><topic>Scanning electron microscopy</topic><topic>scanning probe microscopes (SPMs)</topic><topic>Sensor arrays</topic><topic>spatial uncertainty</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Mokaberi, B.</creatorcontrib><creatorcontrib>Requicha, A.A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mokaberi, B.</au><au>Requicha, A.A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>5</volume><issue>2</issue><spage>197</spage><epage>206</epage><pages>197-206</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASE.2007.895008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5955 |
ispartof | IEEE transactions on automation science and engineering, 2008-04, Vol.5 (2), p.197-206 |
issn | 1545-5955 1558-3783 |
language | eng |
recordid | cdi_proquest_miscellaneous_903623348 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Atomic force microscopes (AFMs) Atomic force microscopy automatic nanomanipulation Cartography Compensation Computer science control theory systems Control theory. Systems Creep Creep (materials) Exact sciences and technology Hysteresis Instruments, apparatus, components and techniques common to several branches of physics and astronomy Inverse Inverse problems Laboratories Mathematical models Mechanical engineering. Machine design Mechanical instruments, equipment and techniques Micromechanical devices and systems Modelling and identification nano manipulation nanolithography Nanomaterials Nanoparticles nanorobotics Nanostructure nonlinearities Physics Precision engineering, watch making Prototypes Robot sensing systems Robotics Robotics and automation Scanners Scanning electron microscopy scanning probe microscopes (SPMs) Sensor arrays spatial uncertainty Uncertainty |
title | Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensation%20of%20Scanner%20Creep%20and%20Hysteresis%20for%20AFM%20Nanomanipulation&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Mokaberi,%20B.&rft.date=2008-04-01&rft.volume=5&rft.issue=2&rft.spage=197&rft.epage=206&rft.pages=197-206&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2007.895008&rft_dat=%3Cproquest_pasca%3E34404592%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201403726&rft_id=info:pmid/&rft_ieee_id=4358078&rfr_iscdi=true |