Loading…

Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation

Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering 2008-04, Vol.5 (2), p.197-206
Main Authors: Mokaberi, B., Requicha, A.A.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383
cites cdi_FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383
container_end_page 206
container_issue 2
container_start_page 197
container_title IEEE transactions on automation science and engineering
container_volume 5
creator Mokaberi, B.
Requicha, A.A.G.
description Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail.
doi_str_mv 10.1109/TASE.2007.895008
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_903623348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358078</ieee_id><sourcerecordid>34404592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhhdRsH7cBS-LoJ62Tr7a5FhKa4Wqh9ZzSHcnsGWbrEl78N-btaUHD3qawDzvC5Mny24I9AkB9bQcLSZ9CjDsSyUA5EnWI0LIgg0lO-3eXBRCCXGeXcS4BqBcKuhlk7HftOii2dbe5d7mi9I4hyEfB8Q2N67KZ19xiwFjHXPrQz6avuZvxvmNcXW7a36CV9mZNU3E68O8zD6mk-V4Vszfn1_Go3lRCiq3BRecqgrEgFFJVkowPqSVoVKtFDJrK1IxVMZSlmglBTU8rQ0xlhElkEl2mT3ue9vgP3cYt3pTxxKbxjj0u6gVsAFljP9PSgmDhHFI5MOfJOMcuFA0gXe_wLXfBZfu1RRIahrSQYJgD5XBxxjQ6jbUGxO-NAHdidKdKN2J0ntRKXJ_6DWxNI0NxpV1POYoMJl-qqu-3XM1Ih7XnAkJyfE3UeaY7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201403726</pqid></control><display><type>article</type><title>Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation</title><source>IEEE Xplore (Online service)</source><creator>Mokaberi, B. ; Requicha, A.A.G.</creator><creatorcontrib>Mokaberi, B. ; Requicha, A.A.G.</creatorcontrib><description>Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2007.895008</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Atomic force microscopes (AFMs) ; Atomic force microscopy ; automatic nanomanipulation ; Cartography ; Compensation ; Computer science; control theory; systems ; Control theory. Systems ; Creep ; Creep (materials) ; Exact sciences and technology ; Hysteresis ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Inverse ; Inverse problems ; Laboratories ; Mathematical models ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; Micromechanical devices and systems ; Modelling and identification ; nano manipulation ; nanolithography ; Nanomaterials ; Nanoparticles ; nanorobotics ; Nanostructure ; nonlinearities ; Physics ; Precision engineering, watch making ; Prototypes ; Robot sensing systems ; Robotics ; Robotics and automation ; Scanners ; Scanning electron microscopy ; scanning probe microscopes (SPMs) ; Sensor arrays ; spatial uncertainty ; Uncertainty</subject><ispartof>IEEE transactions on automation science and engineering, 2008-04, Vol.5 (2), p.197-206</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383</citedby><cites>FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20385346$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mokaberi, B.</creatorcontrib><creatorcontrib>Requicha, A.A.G.</creatorcontrib><title>Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail.</description><subject>Applied sciences</subject><subject>Atomic force microscopes (AFMs)</subject><subject>Atomic force microscopy</subject><subject>automatic nanomanipulation</subject><subject>Cartography</subject><subject>Compensation</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Creep</subject><subject>Creep (materials)</subject><subject>Exact sciences and technology</subject><subject>Hysteresis</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Inverse</subject><subject>Inverse problems</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Micromechanical devices and systems</subject><subject>Modelling and identification</subject><subject>nano manipulation</subject><subject>nanolithography</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>nanorobotics</subject><subject>Nanostructure</subject><subject>nonlinearities</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Prototypes</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robotics and automation</subject><subject>Scanners</subject><subject>Scanning electron microscopy</subject><subject>scanning probe microscopes (SPMs)</subject><subject>Sensor arrays</subject><subject>spatial uncertainty</subject><subject>Uncertainty</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhhdRsH7cBS-LoJ62Tr7a5FhKa4Wqh9ZzSHcnsGWbrEl78N-btaUHD3qawDzvC5Mny24I9AkB9bQcLSZ9CjDsSyUA5EnWI0LIgg0lO-3eXBRCCXGeXcS4BqBcKuhlk7HftOii2dbe5d7mi9I4hyEfB8Q2N67KZ19xiwFjHXPrQz6avuZvxvmNcXW7a36CV9mZNU3E68O8zD6mk-V4Vszfn1_Go3lRCiq3BRecqgrEgFFJVkowPqSVoVKtFDJrK1IxVMZSlmglBTU8rQ0xlhElkEl2mT3ue9vgP3cYt3pTxxKbxjj0u6gVsAFljP9PSgmDhHFI5MOfJOMcuFA0gXe_wLXfBZfu1RRIahrSQYJgD5XBxxjQ6jbUGxO-NAHdidKdKN2J0ntRKXJ_6DWxNI0NxpV1POYoMJl-qqu-3XM1Ih7XnAkJyfE3UeaY7w</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Mokaberi, B.</creator><creator>Requicha, A.A.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20080401</creationdate><title>Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation</title><author>Mokaberi, B. ; Requicha, A.A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Atomic force microscopes (AFMs)</topic><topic>Atomic force microscopy</topic><topic>automatic nanomanipulation</topic><topic>Cartography</topic><topic>Compensation</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Creep</topic><topic>Creep (materials)</topic><topic>Exact sciences and technology</topic><topic>Hysteresis</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Inverse</topic><topic>Inverse problems</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Micromechanical devices and systems</topic><topic>Modelling and identification</topic><topic>nano manipulation</topic><topic>nanolithography</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>nanorobotics</topic><topic>Nanostructure</topic><topic>nonlinearities</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Prototypes</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robotics and automation</topic><topic>Scanners</topic><topic>Scanning electron microscopy</topic><topic>scanning probe microscopes (SPMs)</topic><topic>Sensor arrays</topic><topic>spatial uncertainty</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Mokaberi, B.</creatorcontrib><creatorcontrib>Requicha, A.A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mokaberi, B.</au><au>Requicha, A.A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>5</volume><issue>2</issue><spage>197</spage><epage>206</epage><pages>197-206</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Nanomanipulation with atomic force microscopes (AFMs) for nanoparticles with overall sizes on the order of 10 nm has been hampered in the past by the large spatial uncertainties encountered in tip positioning. This paper addresses the compensation of nonlinear effects of creep and hysteresis on the piezo scanners which drive most AFMs. Creep and hysteresis are modeled as the superposition of fundamental operators, and their inverse model is obtained by using the inversion properties of the Prandtl-Ishlinskii operator. Identification of the parameters in the forward model is achieved by a novel method that uses the topography of the sample and does not require position sensors. The identified parameters are used to compute the inverse model, which in turn serves to drive the AFM in an open-loop, feedforward scheme. Experimental results show that this approach effectively reduces the spatial uncertainties associated with creep and hysteresis, and supports automated, computer-controlled manipulation operations that otherwise would fail.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASE.2007.895008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2008-04, Vol.5 (2), p.197-206
issn 1545-5955
1558-3783
language eng
recordid cdi_proquest_miscellaneous_903623348
source IEEE Xplore (Online service)
subjects Applied sciences
Atomic force microscopes (AFMs)
Atomic force microscopy
automatic nanomanipulation
Cartography
Compensation
Computer science
control theory
systems
Control theory. Systems
Creep
Creep (materials)
Exact sciences and technology
Hysteresis
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Inverse
Inverse problems
Laboratories
Mathematical models
Mechanical engineering. Machine design
Mechanical instruments, equipment and techniques
Micromechanical devices and systems
Modelling and identification
nano manipulation
nanolithography
Nanomaterials
Nanoparticles
nanorobotics
Nanostructure
nonlinearities
Physics
Precision engineering, watch making
Prototypes
Robot sensing systems
Robotics
Robotics and automation
Scanners
Scanning electron microscopy
scanning probe microscopes (SPMs)
Sensor arrays
spatial uncertainty
Uncertainty
title Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensation%20of%20Scanner%20Creep%20and%20Hysteresis%20for%20AFM%20Nanomanipulation&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Mokaberi,%20B.&rft.date=2008-04-01&rft.volume=5&rft.issue=2&rft.spage=197&rft.epage=206&rft.pages=197-206&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2007.895008&rft_dat=%3Cproquest_pasca%3E34404592%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-45429d0563281b953472da289b9e3ffd1d3e9af235289852a42daa1af3195e383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201403726&rft_id=info:pmid/&rft_ieee_id=4358078&rfr_iscdi=true