Loading…
Carrier Dynamics of Quantum-Dot, Quantum-Dash, and Quantum-Well Semiconductor Optical Amplifiers Operating at 1.55 [mu]m
We assess the influence of the degree of quantum confinement on the carrier recovery times in semiconductor optical amplifiers (SOAs) through an experimental comparative study of three amplifiers, one InAs-InGaAsP-InP quantum dot (0-D), one InAs-InAlGaAs-InP quantum dash (1-D), and one InGaAsP- In-G...
Saved in:
Published in: | IEEE journal of quantum electronics 2007-11, Vol.43 (11), p.982-991 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We assess the influence of the degree of quantum confinement on the carrier recovery times in semiconductor optical amplifiers (SOAs) through an experimental comparative study of three amplifiers, one InAs-InGaAsP-InP quantum dot (0-D), one InAs-InAlGaAs-InP quantum dash (1-D), and one InGaAsP- In-GaAsP-InP quantum well (2-D), all of which operate near 1.55-mum wavelengths. The short-lived (around 1 ps) and long-lived (up to 2 ns) amplitude and phase dynamics of the three devices are characterized via heterodyne pump-probe measurements. The quantum-dot device is found to have the shortest long-lived gain recovery (approx. 80 ps) as well as gain and phase changes indicative of a smaller linewidth enhancement factor, making it the most promising for high-bit-rate applications. The quantum-dot amplifier is also found to have reduced ultrafast transients, due to a lower carrier density in the dots. The quantum-dot gain saturation characteristics and temporal dynamics also provide insight into the nature of the dot energy- level occupancy and the interactions of the dot states with the wetting layer. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2007.904474 |