Loading…
Automatic Generation of Modular Multipliers for FPGA Applications
Since redundant number systems allow constant time addition, they are often at the heart of modular multipliers designed for public key cryptography (PKC) applications. Indeed, PKC involves large operands (160 to 1024 bits) and several researchers proposed carry-save or borrow-save algorithms. Howev...
Saved in:
Published in: | IEEE transactions on computers 2008-12, Vol.57 (12), p.1600-1613 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Since redundant number systems allow constant time addition, they are often at the heart of modular multipliers designed for public key cryptography (PKC) applications. Indeed, PKC involves large operands (160 to 1024 bits) and several researchers proposed carry-save or borrow-save algorithms. However, these number systems do not take advantage of the dedicated carry logic available in modern field programmable gate arrays (FPGAs). To overcome this problem, we suggest to perform modular multiplication in a high-radix carry-save number system, where a sum bit of the carry-save representation is replaced by a sum word. Two digits are then added by means of a small Carry-Ripple Adder (CRA). Furthermore, we propose an algorithm which selects the best high-radix carry-save representation for a given modulus, and generates a synthesizable VHDL description of the operator. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/TC.2008.102 |