Loading…

Extending the environmental risk assessment for oseltamivir (Tamiflu ®) under pandemic use conditions to the coastal marine compartment

In case of an avian-influenza-derived human flu pandemic, an inordinately high use of medicines over several weeks is predicted, in particular for the recommended influenza antiviral oseltamivir (Tamiflu). While the risk of oseltamivir to sewage works and freshwater bodies has already been assessed,...

Full description

Saved in:
Bibliographic Details
Published in:Environment international 2009-08, Vol.35 (6), p.931-936
Main Authors: Hutchinson, Thomas H., Beesley, Amanda, Frickers, Patricia E., Readman, James W., Shaw, Jenny P., Straub, Jürg Oliver
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In case of an avian-influenza-derived human flu pandemic, an inordinately high use of medicines over several weeks is predicted, in particular for the recommended influenza antiviral oseltamivir (Tamiflu). While the risk of oseltamivir to sewage works and freshwater bodies has already been assessed, the fact that a large percentage of the human population worldwide lives relatively close to the sea raises concern for its environmental compatibility in coastal marine waters. The potential risk of high oseltamivir use to the marine compartment is assessed in this publication, based on the 2003 European Community Technical Guidance Document (TGD) for risk assessment. Subchronic embryo–larval ecotoxicity tests with three marine invertebrates ( Pomatoceros triqueter, Annelida; Mytilus edulis, Mollusca; Paracentrotus lividus, Echinodermata) and chronic growth inhibition tests with two different groups of marine microalgae ( Isochrysis galbana, Haptophyta; Skeletonema costatum, Heterokontophyta) were performed with the active substance oseltamivir carboxylic acid to derive a dependable marine predicted no-effect concentration (PNEC). This was compared to a predicted environmental concentration (PEC) for oseltamivir in coastal waters, based on the worst-case freshwater PEC. The PEC/PNEC risk characterisation ratio for the marine compartment is well below 1, which in the terminology of the TGD signifies no immediate concern. Further, while oseltamivir may be persistent (P), it is not bioaccumulative (B) nor highly ecotoxic (T) and therefore not a PBT substance. In conclusion, even a high pandemic use of oseltamivir would not lead to a significant risk for the marine compartment, in confirmation of the risk assessment for sewage works and freshwaters.
ISSN:0160-4120
1873-6750
DOI:10.1016/j.envint.2009.04.001