Loading…
On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments
We compare four different estimation methods for the coefficients of a linear structural equation with instrumental variables. As the classical methods we consider the limited information maximum likelihood (LIML) estimator and the two-stage least squares (TSLS) estimator, and as the semi-parametric...
Saved in:
Published in: | Journal of econometrics 2011-11, Vol.165 (1), p.58-69 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We compare four different estimation methods for the coefficients of a linear structural equation with instrumental variables. As the classical methods we consider the limited information maximum likelihood (LIML) estimator and the two-stage least squares (TSLS) estimator, and as the semi-parametric estimation methods we consider the maximum empirical likelihood (MEL) estimator and the generalized method of moments (GMM) (or the estimating equation) estimator. Tables and figures of the distribution functions of four estimators are given for enough values of the parameters to cover most linear models of interest and we include some heteroscedastic cases and nonlinear cases. We have found that the LIML estimator has good performance in terms of the bounded loss functions and probabilities when the number of instruments is large, that is, the micro-econometric models with “many instruments” in the terminology of recent econometric literature. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/j.jeconom.2011.05.006 |