Loading…

Ex vivo cartilage defect model for the evaluation of cartilage regeneration using mesenchymal stem cells

An ex vivo cartilage defect model for the evaluation of cartilage regeneration using mesenchymal stem cells (MSCs) was developed. Porcine chondrocytes and human MSCs were transplanted into cartilage defects created on the porcine osteochondral and chondral discs and cultivated for 3 weeks. Although...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioscience and bioengineering 2011-03, Vol.111 (3), p.357-364
Main Authors: Iwai, Ryosuke, Fujiwara, Masashi, Wakitani, Shigeyuki, Takagi, Mutsumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An ex vivo cartilage defect model for the evaluation of cartilage regeneration using mesenchymal stem cells (MSCs) was developed. Porcine chondrocytes and human MSCs were transplanted into cartilage defects created on the porcine osteochondral and chondral discs and cultivated for 3 weeks. Although the regeneration of cartilage-like tissues was observed after the transplantation of chondrocytes to defects on both of the osteochondral and chondral discs, the transplanted MSCs formed cartilage-like tissues only in the defect on the chondral disc, in which an in vivo cartilage-like structure was partly observed, and a degraded tissue was observed in the defect on the osteochondral disc. The effects of medium additives such as serum, transforming growth factor-β3 (TGF-β3), and fibroblast growth factor-2, and the transfection of TGF-β3 gene to MSCs could be clearly estimated using the cartilage defect model. In conclusion, a chondral disc with defects is useful for evaluating cartilage regeneration using MSCs.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2010.11.001