Loading…

Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China

Three Paleogene syn-rift intervals from the Bohai Bay Basin, the most petroliferous basin in China, were analyzed with sedimentological and geochemical techniques to characterize the lateral source rock heterogeneities, to reveal the environmental and ecological changes through geologic time and to...

Full description

Saved in:
Bibliographic Details
Published in:Organic geochemistry 2011-05, Vol.42 (4), p.323-339
Main Authors: Hao, Fang, Zhou, Xinhuai, Zhu, Yangming, Yang, Yuanyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three Paleogene syn-rift intervals from the Bohai Bay Basin, the most petroliferous basin in China, were analyzed with sedimentological and geochemical techniques to characterize the lateral source rock heterogeneities, to reveal the environmental and ecological changes through geologic time and to construct depositional models for lacustrine source rocks under different tectonic and climatic conditions. The third (Es 3) and first (Es 1) members of the Eocene Shahejie Formation and the Oligocene Dongying Formation (Ed) display widely variable total organic carbon contents, hydrogen indices and visual kerogen compositions, suggesting changes in organic facies from deep to marginal sediments. Carefully selected deep-lake facies samples from any interval, however, display fairly uniform biomarker composition. These three intervals have distinctly different biomarker assemblages, which indicate weakly alkaline, freshwater lakes with a moderately deep thermocline during Es 3 deposition, alkaline-saline lakes with shallow chemocline during Es 1 deposition and acidic, freshwater lakes with deep, unstable thermocline during the deposition of the Dongying Formation. Such environmental changes corresponded to changes in subsidence rate and paleoclimate, from rapid subsidence and wet climate during Es 3 deposition, through slow subsidence and arid climate during Es 1 deposition to rapid subsidence and wet climate during Ed deposition and resulted in synchronous changes in terrigenous organic matter input, phytoplankton community and primary productivity. The co-evolution of environments and organisms controlled by tectonic subsidence and climate accounted for the deposition and distribution of high quality lacustrine source rocks with distinctly different geochemical characteristics. Most rift basins experienced changes in subsidence rates and possibly changes in climates during their syn-rift evolutions. The models constructed in this paper may have important implications for source rock prediction in other lacustrine rift basins.
ISSN:0146-6380
1873-5290
DOI:10.1016/j.orggeochem.2011.01.010