Loading…

The role of oxidative stress in neuromelanin synthesis in PC12 cells

Abstract Previous research has indicated that neuromelanin (NM) is involved in the pathogenesis of Parkinson's disease (PD). Increased reactive oxygen species (ROS) generation in PD sufferers is thought to be related to enhanced tyrosine hydroxylase (TH) activity and NM production. However, few...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2011-08, Vol.189, p.43-50
Main Authors: He, A.-Y, Qiu, L.-J, Gao, Y, Zhu, Y, Xu, Z.-W, Xu, J.-M, Zhang, Z.-H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Previous research has indicated that neuromelanin (NM) is involved in the pathogenesis of Parkinson's disease (PD). Increased reactive oxygen species (ROS) generation in PD sufferers is thought to be related to enhanced tyrosine hydroxylase (TH) activity and NM production. However, few reports have confirmed this hypothesis. In this study, PC12 cells of all experiments were exposed to 50 μmol/L levodopa ( l -DOPA) to generate a model for NM synthesis. Meanwhile, PC12 cells were treated with glucose oxidase (GO) at different concentrations to generate oxidative stress. Finally, cell viability, TH activity, and NM generation in PC12 cells were measured. The results showed that GO dose-dependently stimulated oxidative stress generation in PC12 cells. Moderate increases in oxidative stress enhanced the viability of PC12 cells. However, an excessive level of oxidative stress can lead to the degeneration of PC12 cells. Notably, in the surviving PC12 cells, ROS significantly increased the TH activity, and the NM production was also upregulated. Thus, oxidative stress may upregulate the synthesis of NM, which may be a result of the increased TH activity observed in response to the elevated ROS in l -DOPA-treated PC12 cells.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2011.05.040