Loading…

Nash equilibria in stabilizing systems

The objective of this paper is three-fold. First, we specify what it means for a fixed point of a stabilizing distributed system to be a Nash equilibrium. Second, we present methods that can be used to verify whether or not a given fixed point of a given stabilizing distributed system is a Nash equi...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2011-07, Vol.412 (33), p.4325-4335
Main Authors: Gouda, M.G., Acharya, H.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this paper is three-fold. First, we specify what it means for a fixed point of a stabilizing distributed system to be a Nash equilibrium. Second, we present methods that can be used to verify whether or not a given fixed point of a given stabilizing distributed system is a Nash equilibrium. Third, we argue that in a stabilizing distributed system, whose fixed points are all Nash equilibria, no process has an incentive to perturb its local state, after the system reaches one fixed point, in order to force the system to reach another fixed point where the perturbing process achieves a better gain. If the fixed points of a stabilizing distributed system are all Nash equilibria, then we refer to the system as perturbation-proof. Otherwise, we refer to the system as perturbation-prone. We identify four natural classes of perturbation-(proof/prone) systems. We present system examples for three of these classes of systems, and show that the fourth class is empty.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2010.11.027