Loading…
A parametrization method for solving nonlinear two-point boundary value problems
A sharper version of the local Hadamard theorem on the solvability of nonlinear equations is proved. Additional parameters are introduced, and a two-parameter family of algorithms for solving nonlinear two-point boundary value problems is proposed. Conditions for the convergence of these algorithms...
Saved in:
Published in: | Computational mathematics and mathematical physics 2007-01, Vol.47 (1), p.37-61 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A sharper version of the local Hadamard theorem on the solvability of nonlinear equations is proved. Additional parameters are introduced, and a two-parameter family of algorithms for solving nonlinear two-point boundary value problems is proposed. Conditions for the convergence of these algorithms are given in terms of the initial data. Using the right-hand side of the system of differential equations and the boundary conditions, equations are constructed from which initial approximations to the unknown parameters can be found. A criterion is established for the existence of an isolated solution to a nonlinear two-point boundary value problem. This solution is shown to be a continuous function of the data specifying the problem.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S096554250701006X |