Loading…
A parametrization method for solving nonlinear two-point boundary value problems
A sharper version of the local Hadamard theorem on the solvability of nonlinear equations is proved. Additional parameters are introduced, and a two-parameter family of algorithms for solving nonlinear two-point boundary value problems is proposed. Conditions for the convergence of these algorithms...
Saved in:
Published in: | Computational mathematics and mathematical physics 2007-01, Vol.47 (1), p.37-61 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c219t-f1f30af4803f6d085793ee507b5b781291cf54b0052c73939e936ba451fca7503 |
---|---|
cites | cdi_FETCH-LOGICAL-c219t-f1f30af4803f6d085793ee507b5b781291cf54b0052c73939e936ba451fca7503 |
container_end_page | 61 |
container_issue | 1 |
container_start_page | 37 |
container_title | Computational mathematics and mathematical physics |
container_volume | 47 |
creator | Dzhumabaev, D S Temesheva, S M |
description | A sharper version of the local Hadamard theorem on the solvability of nonlinear equations is proved. Additional parameters are introduced, and a two-parameter family of algorithms for solving nonlinear two-point boundary value problems is proposed. Conditions for the convergence of these algorithms are given in terms of the initial data. Using the right-hand side of the system of differential equations and the boundary conditions, equations are constructed from which initial approximations to the unknown parameters can be found. A criterion is established for the existence of an isolated solution to a nonlinear two-point boundary value problem. This solution is shown to be a continuous function of the data specifying the problem.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1134/S096554250701006X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907934219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172296861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-f1f30af4803f6d085793ee507b5b781291cf54b0052c73939e936ba451fca7503</originalsourceid><addsrcrecordid>eNplkE9LxDAQxYMouK5-AG_Bi6fqJGnS5rgs_oMFBRW8lbSbaJY0qUmr6Kc3y3rS0wzMj_fePIROCVwQwsrLR5CC85JyqIAAiJc9NCOc80IIQffRbHsutvdDdJTSBoAIWbMZeljgQUXV6zHabzXa4HHe38IamxBxCu7D-lfsg3fWaxXx-BmKIVg_4jZMfq3iF_5QbtJ4iKF1uk_H6MAol_TJ75yj5-urp-Vtsbq_uVsuVkVHiRwLQwwDZcoamBFrqHklmdY5fcvbqiZUks7wsgXgtKuYZFJLJlpVcmI6VXFgc3S-083G75NOY9Pb1GnnlNdhSo2ErFhmr0ye_SE3YYo-h2sqLmtOK0ozRHZQF0NKUZtmiLbP7zUEmm3Dzb-G2Q_BAm3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759852722</pqid></control><display><type>article</type><title>A parametrization method for solving nonlinear two-point boundary value problems</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Dzhumabaev, D S ; Temesheva, S M</creator><creatorcontrib>Dzhumabaev, D S ; Temesheva, S M</creatorcontrib><description>A sharper version of the local Hadamard theorem on the solvability of nonlinear equations is proved. Additional parameters are introduced, and a two-parameter family of algorithms for solving nonlinear two-point boundary value problems is proposed. Conditions for the convergence of these algorithms are given in terms of the initial data. Using the right-hand side of the system of differential equations and the boundary conditions, equations are constructed from which initial approximations to the unknown parameters can be found. A criterion is established for the existence of an isolated solution to a nonlinear two-point boundary value problem. This solution is shown to be a continuous function of the data specifying the problem.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S096554250701006X</identifier><language>eng</language><publisher>Moscow: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Boundary value problems ; Convergence ; Differential equations ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Studies</subject><ispartof>Computational mathematics and mathematical physics, 2007-01, Vol.47 (1), p.37-61</ispartof><rights>Nauka/Interperiodica 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-f1f30af4803f6d085793ee507b5b781291cf54b0052c73939e936ba451fca7503</citedby><cites>FETCH-LOGICAL-c219t-f1f30af4803f6d085793ee507b5b781291cf54b0052c73939e936ba451fca7503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/759852722?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362</link.rule.ids></links><search><creatorcontrib>Dzhumabaev, D S</creatorcontrib><creatorcontrib>Temesheva, S M</creatorcontrib><title>A parametrization method for solving nonlinear two-point boundary value problems</title><title>Computational mathematics and mathematical physics</title><description>A sharper version of the local Hadamard theorem on the solvability of nonlinear equations is proved. Additional parameters are introduced, and a two-parameter family of algorithms for solving nonlinear two-point boundary value problems is proposed. Conditions for the convergence of these algorithms are given in terms of the initial data. Using the right-hand side of the system of differential equations and the boundary conditions, equations are constructed from which initial approximations to the unknown parameters can be found. A criterion is established for the existence of an isolated solution to a nonlinear two-point boundary value problem. This solution is shown to be a continuous function of the data specifying the problem.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Studies</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNplkE9LxDAQxYMouK5-AG_Bi6fqJGnS5rgs_oMFBRW8lbSbaJY0qUmr6Kc3y3rS0wzMj_fePIROCVwQwsrLR5CC85JyqIAAiJc9NCOc80IIQffRbHsutvdDdJTSBoAIWbMZeljgQUXV6zHabzXa4HHe38IamxBxCu7D-lfsg3fWaxXx-BmKIVg_4jZMfq3iF_5QbtJ4iKF1uk_H6MAol_TJ75yj5-urp-Vtsbq_uVsuVkVHiRwLQwwDZcoamBFrqHklmdY5fcvbqiZUks7wsgXgtKuYZFJLJlpVcmI6VXFgc3S-083G75NOY9Pb1GnnlNdhSo2ErFhmr0ye_SE3YYo-h2sqLmtOK0ozRHZQF0NKUZtmiLbP7zUEmm3Dzb-G2Q_BAm3Y</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Dzhumabaev, D S</creator><creator>Temesheva, S M</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20070101</creationdate><title>A parametrization method for solving nonlinear two-point boundary value problems</title><author>Dzhumabaev, D S ; Temesheva, S M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-f1f30af4803f6d085793ee507b5b781291cf54b0052c73939e936ba451fca7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dzhumabaev, D S</creatorcontrib><creatorcontrib>Temesheva, S M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dzhumabaev, D S</au><au>Temesheva, S M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parametrization method for solving nonlinear two-point boundary value problems</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>47</volume><issue>1</issue><spage>37</spage><epage>61</epage><pages>37-61</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A sharper version of the local Hadamard theorem on the solvability of nonlinear equations is proved. Additional parameters are introduced, and a two-parameter family of algorithms for solving nonlinear two-point boundary value problems is proposed. Conditions for the convergence of these algorithms are given in terms of the initial data. Using the right-hand side of the system of differential equations and the boundary conditions, equations are constructed from which initial approximations to the unknown parameters can be found. A criterion is established for the existence of an isolated solution to a nonlinear two-point boundary value problem. This solution is shown to be a continuous function of the data specifying the problem.[PUBLICATION ABSTRACT]</abstract><cop>Moscow</cop><pub>Springer Nature B.V</pub><doi>10.1134/S096554250701006X</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2007-01, Vol.47 (1), p.37-61 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_miscellaneous_907934219 |
source | ABI/INFORM Global; Springer Link |
subjects | Algorithms Approximation Boundary value problems Convergence Differential equations Mathematical analysis Mathematical models Nonlinearity Studies |
title | A parametrization method for solving nonlinear two-point boundary value problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parametrization%20method%20for%20solving%20nonlinear%20two-point%20boundary%20value%20problems&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Dzhumabaev,%20D%20S&rft.date=2007-01-01&rft.volume=47&rft.issue=1&rft.spage=37&rft.epage=61&rft.pages=37-61&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S096554250701006X&rft_dat=%3Cproquest_cross%3E2172296861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-f1f30af4803f6d085793ee507b5b781291cf54b0052c73939e936ba451fca7503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=759852722&rft_id=info:pmid/&rfr_iscdi=true |