Loading…
Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems
Recently, the fractional-order Chen–Lee system was proven to exhibit chaos by the presence of a positive Lyapunov exponent. However, the existence of chaos in fractional-order Chen–Lee systems has never been theoretically proven in the literature. Moreover, synchronization of chaotic fractional-orde...
Saved in:
Published in: | Nonlinear dynamics 2010-12, Vol.62 (4), p.851-858 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, the fractional-order Chen–Lee system was proven to exhibit chaos by the presence of a positive Lyapunov exponent. However, the existence of chaos in fractional-order Chen–Lee systems has never been theoretically proven in the literature. Moreover, synchronization of chaotic fractional-order systems was extensively studied through numerical simulations in some of the literature, but a theoretical analysis is still lacking. Therefore, we devoted ourselves to investigating the theoretical basis of chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems in this paper. Based on the stability theorems of fractional-order systems, the necessary conditions for the existence of chaos and the controllers for hybrid projective synchronization were derived. The numerical simulations show coincidence with the theoretical results. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-010-9767-6 |