Loading…

Solving Optimization Problems for the Flight Trajectories of a Spacecraft with a High-Thrust Jet Engine in Pulse Formulation for an Arbitrary Gravitational Field in a Vacuum

A mathematically well-posed technique is suggested to obtain first-order necessary conditions of local optimality for the problems of optimization to be solved in a pulse formulation for flight trajectories of a spacecraft with a high-thrust jet engine (HTJE) in an arbitrary gravitational field in v...

Full description

Saved in:
Bibliographic Details
Published in:Cosmic research 2002-01, Vol.40 (1), p.81-104
Main Authors: Grigoriev, I S, Grigoriev, K G
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mathematically well-posed technique is suggested to obtain first-order necessary conditions of local optimality for the problems of optimization to be solved in a pulse formulation for flight trajectories of a spacecraft with a high-thrust jet engine (HTJE) in an arbitrary gravitational field in vacuum. The technique is based on the Lagrange principle of derestriction for conditional extremum problems in a function space. It allows one to formalize an algorithm of change from the problems of optimization to a boundary-value problem for a system of ordinary differential equations in the case of any optimization problem for which the pulse formulation makes sense. In this work, such a change is made for the case of optimizing the flight trajectories of a spacecraft with a HTJE when terminal and intermediate conditions (like equalities, inequalities, and the terminal functional of minimization) are taken in a general form. As an example of the application of the suggested technique, we consider in this work, within the framework of a bounded circular three-point problem in pulse formulation, the problem of constructing the flight trajectories of a spacecraft with a HTJE through one or several libration points (including the case of going through all libration points) of the Earth-Moon system. The spacecraft is launched from a circular orbit of an Earth's artificial satellite and, upon passing through a point (or points) of libration, returns to the initial orbit. The expenditure of mass (characteristic velocity) is minimized at a restricted time of transfer.[PUBLICATION ABSTRACT]
ISSN:0010-9525
1608-3075
DOI:10.1023/A:1014256120034