Loading…

Solving quadratic distance problems: an LMI-based approach

The computation of the minimum distance of a point to a surface in a finite-dimensional space is a key issue in several system analysis and control problems. The paper presents a general framework in which some classes of minimum distance problems are tackled via linear matrix inequality (LMI) techn...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2003-02, Vol.48 (2), p.200-212
Main Authors: Chesi, G., Garulli, A., Tesi, A., Vicino, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The computation of the minimum distance of a point to a surface in a finite-dimensional space is a key issue in several system analysis and control problems. The paper presents a general framework in which some classes of minimum distance problems are tackled via linear matrix inequality (LMI) techniques. Exploiting a suitable representation of homogeneous forms, a lower bound to the solution of a canonical quadratic distance problem is obtained by solving a one-parameter family of LMI optimization problems. Several properties of the proposed technique are discussed. In particular, tightness of the lower bound is investigated, providing both a simple algorithmic procedure for a posteriori optimality testing and a structural condition on the related homogeneous form that ensures optimality a priori. Extensive numerical simulations are reported showing promising performances of the proposed method.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2002.808465