Loading…
Solving quadratic distance problems: an LMI-based approach
The computation of the minimum distance of a point to a surface in a finite-dimensional space is a key issue in several system analysis and control problems. The paper presents a general framework in which some classes of minimum distance problems are tackled via linear matrix inequality (LMI) techn...
Saved in:
Published in: | IEEE transactions on automatic control 2003-02, Vol.48 (2), p.200-212 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The computation of the minimum distance of a point to a surface in a finite-dimensional space is a key issue in several system analysis and control problems. The paper presents a general framework in which some classes of minimum distance problems are tackled via linear matrix inequality (LMI) techniques. Exploiting a suitable representation of homogeneous forms, a lower bound to the solution of a canonical quadratic distance problem is obtained by solving a one-parameter family of LMI optimization problems. Several properties of the proposed technique are discussed. In particular, tightness of the lower bound is investigated, providing both a simple algorithmic procedure for a posteriori optimality testing and a structural condition on the related homogeneous form that ensures optimality a priori. Extensive numerical simulations are reported showing promising performances of the proposed method. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2002.808465 |