Loading…
Arabidopsis kinome: after the casting
Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% o...
Saved in:
Published in: | Functional & integrative genomics 2004-07, Vol.4 (3), p.163-187 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3 |
---|---|
cites | |
container_end_page | 187 |
container_issue | 3 |
container_start_page | 163 |
container_title | Functional & integrative genomics |
container_volume | 4 |
creator | CHAMPION, A KREIS, M MOCKAITIS, K PICAUD, A HENRY, Y |
description | Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness. |
doi_str_mv | 10.1007/s10142-003-0096-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_910666898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66775696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AQgBdRrFZ_gBcJQvUUnX3veivFFxS8KHhbNslGU_Oou8nBf--WBgseZBhmGL4ZmA-hMwzXGEDeBAyYkRSAxtQiZXvoCDOqUqmZ2v_t6dsEHYewAgAOmh6iCWaSAeHsCM3m3mZV0a1DFZLPqu0ad5vYsnc-6T9cktvQV-37CToobR3c6Vin6PX-7mXxmC6fH54W82WaUyX6lCogsqTUFYxkUoJ2LOeloiRjisU5szEcVpAJUvBMYY1LkBmABSs4FHSKrrZ31777GlzoTVOF3NW1bV03BKMxCCGUVpG8_JcUQkoutIjgxR9w1Q2-jV8YgrXmIJiMEN5Cue9C8K40a1811n8bDGaj2mxVm6jabFQbFnfOx8ND1rhitzG6jcBsBGzIbV162-ZV2HFcCc2kpD8RA4K1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219950647</pqid></control><display><type>article</type><title>Arabidopsis kinome: after the casting</title><source>Springer Link</source><creator>CHAMPION, A ; KREIS, M ; MOCKAITIS, K ; PICAUD, A ; HENRY, Y</creator><creatorcontrib>CHAMPION, A ; KREIS, M ; MOCKAITIS, K ; PICAUD, A ; HENRY, Y</creatorcontrib><description>Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness.</description><identifier>ISSN: 1438-793X</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-003-0096-4</identifier><identifier>PMID: 14740254</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Analytical, structural and metabolic biochemistry ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis thaliana ; Biological and medical sciences ; Catalytic Domain ; Classification ; Enzymes ; Evolution, Molecular ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetics ; Genomics ; Microbiology ; Miscellaneous ; Phylogeny ; Protein-Serine-Threonine Kinases - chemistry ; Protein-Serine-Threonine Kinases - genetics ; Proteins ; Substrate Specificity ; Virology</subject><ispartof>Functional & integrative genomics, 2004-07, Vol.4 (3), p.163-187</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15869477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14740254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CHAMPION, A</creatorcontrib><creatorcontrib>KREIS, M</creatorcontrib><creatorcontrib>MOCKAITIS, K</creatorcontrib><creatorcontrib>PICAUD, A</creatorcontrib><creatorcontrib>HENRY, Y</creatorcontrib><title>Arabidopsis kinome: after the casting</title><title>Functional & integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><description>Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Catalytic Domain</subject><subject>Classification</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Flowers & plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Phylogeny</subject><subject>Protein-Serine-Threonine Kinases - chemistry</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Proteins</subject><subject>Substrate Specificity</subject><subject>Virology</subject><issn>1438-793X</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AQgBdRrFZ_gBcJQvUUnX3veivFFxS8KHhbNslGU_Oou8nBf--WBgseZBhmGL4ZmA-hMwzXGEDeBAyYkRSAxtQiZXvoCDOqUqmZ2v_t6dsEHYewAgAOmh6iCWaSAeHsCM3m3mZV0a1DFZLPqu0ad5vYsnc-6T9cktvQV-37CToobR3c6Vin6PX-7mXxmC6fH54W82WaUyX6lCogsqTUFYxkUoJ2LOeloiRjisU5szEcVpAJUvBMYY1LkBmABSs4FHSKrrZ31777GlzoTVOF3NW1bV03BKMxCCGUVpG8_JcUQkoutIjgxR9w1Q2-jV8YgrXmIJiMEN5Cue9C8K40a1811n8bDGaj2mxVm6jabFQbFnfOx8ND1rhitzG6jcBsBGzIbV162-ZV2HFcCc2kpD8RA4K1</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>CHAMPION, A</creator><creator>KREIS, M</creator><creator>MOCKAITIS, K</creator><creator>PICAUD, A</creator><creator>HENRY, Y</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Arabidopsis kinome: after the casting</title><author>CHAMPION, A ; KREIS, M ; MOCKAITIS, K ; PICAUD, A ; HENRY, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Catalytic Domain</topic><topic>Classification</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Flowers & plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Phylogeny</topic><topic>Protein-Serine-Threonine Kinases - chemistry</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Proteins</topic><topic>Substrate Specificity</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAMPION, A</creatorcontrib><creatorcontrib>KREIS, M</creatorcontrib><creatorcontrib>MOCKAITIS, K</creatorcontrib><creatorcontrib>PICAUD, A</creatorcontrib><creatorcontrib>HENRY, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Functional & integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAMPION, A</au><au>KREIS, M</au><au>MOCKAITIS, K</au><au>PICAUD, A</au><au>HENRY, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis kinome: after the casting</atitle><jtitle>Functional & integrative genomics</jtitle><addtitle>Funct Integr Genomics</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>4</volume><issue>3</issue><spage>163</spage><epage>187</epage><pages>163-187</pages><issn>1438-793X</issn><eissn>1438-7948</eissn><abstract>Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>14740254</pmid><doi>10.1007/s10142-003-0096-4</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-793X |
ispartof | Functional & integrative genomics, 2004-07, Vol.4 (3), p.163-187 |
issn | 1438-793X 1438-7948 |
language | eng |
recordid | cdi_proquest_miscellaneous_910666898 |
source | Springer Link |
subjects | Analytical, structural and metabolic biochemistry Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis thaliana Biological and medical sciences Catalytic Domain Classification Enzymes Evolution, Molecular Flowers & plants Fundamental and applied biological sciences. Psychology Genes Genetics Genomics Microbiology Miscellaneous Phylogeny Protein-Serine-Threonine Kinases - chemistry Protein-Serine-Threonine Kinases - genetics Proteins Substrate Specificity Virology |
title | Arabidopsis kinome: after the casting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20kinome:%20after%20the%20casting&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=CHAMPION,%20A&rft.date=2004-07-01&rft.volume=4&rft.issue=3&rft.spage=163&rft.epage=187&rft.pages=163-187&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-003-0096-4&rft_dat=%3Cproquest_cross%3E66775696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219950647&rft_id=info:pmid/14740254&rfr_iscdi=true |