Loading…

Arabidopsis kinome: after the casting

Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% o...

Full description

Saved in:
Bibliographic Details
Published in:Functional & integrative genomics 2004-07, Vol.4 (3), p.163-187
Main Authors: CHAMPION, A, KREIS, M, MOCKAITIS, K, PICAUD, A, HENRY, Y
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3
cites
container_end_page 187
container_issue 3
container_start_page 163
container_title Functional & integrative genomics
container_volume 4
creator CHAMPION, A
KREIS, M
MOCKAITIS, K
PICAUD, A
HENRY, Y
description Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness.
doi_str_mv 10.1007/s10142-003-0096-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_910666898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66775696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AQgBdRrFZ_gBcJQvUUnX3veivFFxS8KHhbNslGU_Oou8nBf--WBgseZBhmGL4ZmA-hMwzXGEDeBAyYkRSAxtQiZXvoCDOqUqmZ2v_t6dsEHYewAgAOmh6iCWaSAeHsCM3m3mZV0a1DFZLPqu0ad5vYsnc-6T9cktvQV-37CToobR3c6Vin6PX-7mXxmC6fH54W82WaUyX6lCogsqTUFYxkUoJ2LOeloiRjisU5szEcVpAJUvBMYY1LkBmABSs4FHSKrrZ31777GlzoTVOF3NW1bV03BKMxCCGUVpG8_JcUQkoutIjgxR9w1Q2-jV8YgrXmIJiMEN5Cue9C8K40a1811n8bDGaj2mxVm6jabFQbFnfOx8ND1rhitzG6jcBsBGzIbV162-ZV2HFcCc2kpD8RA4K1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219950647</pqid></control><display><type>article</type><title>Arabidopsis kinome: after the casting</title><source>Springer Link</source><creator>CHAMPION, A ; KREIS, M ; MOCKAITIS, K ; PICAUD, A ; HENRY, Y</creator><creatorcontrib>CHAMPION, A ; KREIS, M ; MOCKAITIS, K ; PICAUD, A ; HENRY, Y</creatorcontrib><description>Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness.</description><identifier>ISSN: 1438-793X</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-003-0096-4</identifier><identifier>PMID: 14740254</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Analytical, structural and metabolic biochemistry ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis thaliana ; Biological and medical sciences ; Catalytic Domain ; Classification ; Enzymes ; Evolution, Molecular ; Flowers &amp; plants ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetics ; Genomics ; Microbiology ; Miscellaneous ; Phylogeny ; Protein-Serine-Threonine Kinases - chemistry ; Protein-Serine-Threonine Kinases - genetics ; Proteins ; Substrate Specificity ; Virology</subject><ispartof>Functional &amp; integrative genomics, 2004-07, Vol.4 (3), p.163-187</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15869477$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14740254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CHAMPION, A</creatorcontrib><creatorcontrib>KREIS, M</creatorcontrib><creatorcontrib>MOCKAITIS, K</creatorcontrib><creatorcontrib>PICAUD, A</creatorcontrib><creatorcontrib>HENRY, Y</creatorcontrib><title>Arabidopsis kinome: after the casting</title><title>Functional &amp; integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><description>Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Catalytic Domain</subject><subject>Classification</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Flowers &amp; plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Phylogeny</subject><subject>Protein-Serine-Threonine Kinases - chemistry</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Proteins</subject><subject>Substrate Specificity</subject><subject>Virology</subject><issn>1438-793X</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AQgBdRrFZ_gBcJQvUUnX3veivFFxS8KHhbNslGU_Oou8nBf--WBgseZBhmGL4ZmA-hMwzXGEDeBAyYkRSAxtQiZXvoCDOqUqmZ2v_t6dsEHYewAgAOmh6iCWaSAeHsCM3m3mZV0a1DFZLPqu0ad5vYsnc-6T9cktvQV-37CToobR3c6Vin6PX-7mXxmC6fH54W82WaUyX6lCogsqTUFYxkUoJ2LOeloiRjisU5szEcVpAJUvBMYY1LkBmABSs4FHSKrrZ31777GlzoTVOF3NW1bV03BKMxCCGUVpG8_JcUQkoutIjgxR9w1Q2-jV8YgrXmIJiMEN5Cue9C8K40a1811n8bDGaj2mxVm6jabFQbFnfOx8ND1rhitzG6jcBsBGzIbV162-ZV2HFcCc2kpD8RA4K1</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>CHAMPION, A</creator><creator>KREIS, M</creator><creator>MOCKAITIS, K</creator><creator>PICAUD, A</creator><creator>HENRY, Y</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040701</creationdate><title>Arabidopsis kinome: after the casting</title><author>CHAMPION, A ; KREIS, M ; MOCKAITIS, K ; PICAUD, A ; HENRY, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Catalytic Domain</topic><topic>Classification</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Flowers &amp; plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Phylogeny</topic><topic>Protein-Serine-Threonine Kinases - chemistry</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Proteins</topic><topic>Substrate Specificity</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAMPION, A</creatorcontrib><creatorcontrib>KREIS, M</creatorcontrib><creatorcontrib>MOCKAITIS, K</creatorcontrib><creatorcontrib>PICAUD, A</creatorcontrib><creatorcontrib>HENRY, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Functional &amp; integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAMPION, A</au><au>KREIS, M</au><au>MOCKAITIS, K</au><au>PICAUD, A</au><au>HENRY, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis kinome: after the casting</atitle><jtitle>Functional &amp; integrative genomics</jtitle><addtitle>Funct Integr Genomics</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>4</volume><issue>3</issue><spage>163</spage><epage>187</epage><pages>163-187</pages><issn>1438-793X</issn><eissn>1438-7948</eissn><abstract>Arabidopsis thaliana is used as a favourite experimental organism for many aspects of plant biology. We capitalized on the recently available Arabidopsis genome sequence and predicted proteome, to draw up a genome-scale protein serine/threonine kinase (PSTK) inventory. The PSTKs represent about 4% of the A. thaliana proteome. In this study, we provide a description of the content and diversity of the non-receptor PSTKs. These kinases have crucial functions in sensing, mediating and coordinating cellular responses to an extensive range of stimuli. A total of 369 predicted non receptor PSTKs were detailed: the Raf superfamily, the CMGC, CaMK, AGC and STE families, as well as a few small clades and orphan sequences. An extensive relationship analysis of these kinases allows us to classify the proteins in superfamilies, families, sub-families and groups. The classification provides a better knowledge of the characteristics shared by the different clades. We focused on the MAP kinase module elements, with particular attention to their docking sites for protein-protein interaction and their biological function. The large number of A. thaliana genes encoding kinases might have been achieved through successive rounds of gene and genome duplications. The evolution towards an increasing gene number suggests that functional redundancy plays an important role in plant genetic robustness.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>14740254</pmid><doi>10.1007/s10142-003-0096-4</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-793X
ispartof Functional & integrative genomics, 2004-07, Vol.4 (3), p.163-187
issn 1438-793X
1438-7948
language eng
recordid cdi_proquest_miscellaneous_910666898
source Springer Link
subjects Analytical, structural and metabolic biochemistry
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis thaliana
Biological and medical sciences
Catalytic Domain
Classification
Enzymes
Evolution, Molecular
Flowers & plants
Fundamental and applied biological sciences. Psychology
Genes
Genetics
Genomics
Microbiology
Miscellaneous
Phylogeny
Protein-Serine-Threonine Kinases - chemistry
Protein-Serine-Threonine Kinases - genetics
Proteins
Substrate Specificity
Virology
title Arabidopsis kinome: after the casting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20kinome:%20after%20the%20casting&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=CHAMPION,%20A&rft.date=2004-07-01&rft.volume=4&rft.issue=3&rft.spage=163&rft.epage=187&rft.pages=163-187&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-003-0096-4&rft_dat=%3Cproquest_cross%3E66775696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-38027f33ed42b7709e4c5f832b484f334a4a4e180b62d5b8191f07b00a0a650d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219950647&rft_id=info:pmid/14740254&rfr_iscdi=true