Loading…
Probing the viral metallome: searching for metalloproteins in bacteriophage [small lambda] - the hunt begins
Although the proteome and genome of bacteriophages are well developed, there is little knowledge about metals and their interactions with the phages, even though metals have been observed in stabilizing phage particles. With expanding studies of phage display and its promising applications, metallop...
Saved in:
Published in: | Metallomics 2011-01, Vol.3 (5), p.472-481 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although the proteome and genome of bacteriophages are well developed, there is little knowledge about metals and their interactions with the phages, even though metals have been observed in stabilizing phage particles. With expanding studies of phage display and its promising applications, metalloprotein investigations in the bacteriophage areas are necessary to understand whether or not metalloproteins are included in the viral coat proteome. Since these virus studies are still in their infancy, lambda phage was chosen due to its high metal-binding potential as suggested by the cysteine/methionine rich proteins in the viral coat. After large-scale preparation and further purification of lambda phage according to standard protocols, state-of-the-art metallomics techniques via combinations of chromatographies and mass spectrometries were utilized for screening metal-associated species in lambda phage. The lambda phage sample was first separated using non-denaturing size exclusion chromatography with selective metal detection by ICPMS for screening associated metals and generating size distribution fractions for the various metal species, some of which include metalloproteins. Various molecular size distribution patterns were exhibited for the metals detected, Mn, Fe, Co, Ni, Cu and Zn, at different molecular weight ranges. On the other hand numerous other metals were not associated with the coat proteins, as they were not detected in the different molecular weight fractions. Further identification for putative metallopeptides and metalloproteins was accomplished by collecting various metal species' fractions offline and subsequently analyzing tryptically-digested fractions via nanoLC-Chip-ESI-MS. By searching appropriate MS databases with both Spectrum Mill and MASCOT search engines, the main capsid protein, gpE, a capsid decoration protein, gpD, and main tail component protein, gpV, were found and are known for associations with the detected transition metals. These findings will likely provide valuable information for lambda phage engineered applications. |
---|---|
ISSN: | 1756-5901 |
DOI: | 10.1039/C0MT00104J |