Loading…

Impurity Profiling to Match a Nerve Agent to Its Precursor Source for Chemical Forensics Applications

Chemical forensics is a developing field that aims to attribute a chemical (or mixture) of interest to its source by the analysis of the chemical itself or associated material constituents. Herein, for the first time, trace impurities detected by gas chromatography/mass spectrometry and originating...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2011-12, Vol.83 (24), p.9564-9572
Main Authors: Fraga, Carlos G, Pérez Acosta, Gabriel A, Crenshaw, Michael D, Wallace, Krys, Mong, Gary M, Colburn, Heather A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chemical forensics is a developing field that aims to attribute a chemical (or mixture) of interest to its source by the analysis of the chemical itself or associated material constituents. Herein, for the first time, trace impurities detected by gas chromatography/mass spectrometry and originating from a chemical precursor were used to match a synthesized nerve agent to its precursor source. Specifically, six batches of sarin (GB, isopropyl methylphosphonofluoridate) and its intermediate methylphosphonic difluoride (DF) were synthesized from two commercial stocks of 97% pure methylphosphonic dichloride (DC); the GB and DF were then matched by impurity profiling to their DC stocks from a collection of five possible stocks. Source matching was objectively demonstrated through the grouping by hierarchal cluster analysis of the GB and DF synthetic batches with their respective DC precursor stocks based solely upon the impurities previously detected in five DC stocks. This was possible because each tested DC stock had a unique impurity profile that had 57% to 88% of its impurities persisting through product synthesis, decontamination, and sample preparation. This work forms a basis for the use of impurity profiling to help find and prosecute perpetrators of chemical attacks.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac202340u