Loading…

Anopheline anti-platelet protein from a malaria vector mosquito has anti-thrombotic effects in vivo without compromising hemostasis

Abstract Introduction The saliva of blood-feeding animals (e.g., mosquitoes, ticks, bats) has pharmacological activities that facilitate efficient blood-sucking. We previously identified a unique anti-platelet protein, anopheline anti-platelet protein (AAPP), from the salivary gland of female Anophe...

Full description

Saved in:
Bibliographic Details
Published in:Thrombosis research 2012-02, Vol.129 (2), p.169-175
Main Authors: Hayashi, Hideki, Kyushiki, Hiroyuki, Nagano, Keisuke, Sudo, Toshiki, Matsuoka, Hiroyuki, Yoshida, Shigeto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Introduction The saliva of blood-feeding animals (e.g., mosquitoes, ticks, bats) has pharmacological activities that facilitate efficient blood-sucking. We previously identified a unique anti-platelet protein, anopheline anti-platelet protein (AAPP), from the salivary gland of female Anopheles stephensi (human malaria vector mosquito). AAPP specifically blocks platelet adhesion to collagen by binding directly to collagen and subsequently aggregating platelets. To examine the potential of AAPP as a therapeutic agent, we investigated the in vivo anti-thrombotic effects of AAPP. Materials and Methods Effects of AAPP on whole blood/platelet aggregation in mice were examined. AAPP was also challenged in an established model of pulmonary thromboembolism in mice. We simultaneously investigated the side-effects of the protein (prolongation of bleeding time and coagulation time). Aspirin was used as a positive control for comparison of anti-thrombotic effects. Results and Conclusions AAPP inhibited whole blood aggregation induced by collagen at 10 mg/kg body weight. AAPP prevented pulmonary death at a lower dose (3 mg/kg) without prolongation of bleeding time compared with aspirin (100 mg/kg) that compromised hemostasis. AAPP and aspirin did not affect coagulation time. These results indicate that AAPP has great potential as a new anti-platelet agent with a better risk/benefit ratio than that seen with aspirin (the most widely used anti-platelet agent).
ISSN:0049-3848
1879-2472
DOI:10.1016/j.thromres.2011.09.015