Loading…
Copper Oxide-Based Model of Persistent Free Radical Formation on Combustion-Derived Particulate Matter
We have found that environmentally persistent free radicals (PFRs) are formed by adsorption of substituted aromatic molecular precursors on the surface of cupric oxide-containing particles at temperatures between 100 and 400 °C. This temperature range corresponds to the conditions in the postflame,...
Saved in:
Published in: | Environmental science & technology 2008-07, Vol.42 (13), p.4982-4988 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have found that environmentally persistent free radicals (PFRs) are formed by adsorption of substituted aromatic molecular precursors on the surface of cupric oxide-containing particles at temperatures between 100 and 400 °C. This temperature range corresponds to the conditions in the postflame, cool zone of combustion, and thermal processes. Depending upon the nature of the precursor and the adsorption temperature, both substituted phenoxyl and semiquinone radicals are formed. The PFRs are formed through a mechanism of initial physisorption, followed by chemisorption via elimination of water or hydrogen chloride, and electron transfer resulting in the simultaneous reduction of Cu(II) to Cu(I) and formation of the PFR. The PFRs are still observable by electron paramagnetic resonance (EPR) after exposure to air for more than a day. Their lifetimes under vacuum appear to be infinite. Other redox-active transition metals such as iron are expected to also mediate or catalyze the formation of PFRs. The properties of the observed radicals are consistent with radicals previously observed on airborne and combustion-generated particulate matter. We propose a catalytic biochemical cycle for both the particle-associated semiquinone and phenoxyl PFRs that result in the formation of hydroxyl radical and other reactive oxygen species (ROS). This suggests that combustion-generated, particle-associated PFRs may be responsible for the oxidative stress resulting in cardiopulmonary disease and probably cancer that has been attributed to exposure to airborne fine particles. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es071708h |