Loading…

Fault-free Hamiltonian cycles in faulty arrangement graphs

The arrangement graph A/sub n,k/, which is a generalization of the star graph (n-k=1), presents more flexibility than the star graph in adjusting the major design parameters: number of nodes, degree, and diameter. Previously, the arrangement graph has proved Hamiltonian. In this paper, we further sh...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems 1999-03, Vol.10 (3), p.223-237
Main Authors: Hsieh, Sun-Yuan, Chen, Gen-Huey, Ho, Chin-Wen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The arrangement graph A/sub n,k/, which is a generalization of the star graph (n-k=1), presents more flexibility than the star graph in adjusting the major design parameters: number of nodes, degree, and diameter. Previously, the arrangement graph has proved Hamiltonian. In this paper, we further show that the arrangement graph remains Hamiltonian even if it is faulty. Let |F/sub e/| and |F/sub v/| denote the numbers of edge faults and vertex faults, respectively. We show that A/sub n,k/ is Hamiltonian when 1) (k=2 and n-k/spl ges/4, or k/spl ges/3 and n-k/spl ges/4+[k/2]), and |F/sub e/|/spl les/k(n-k)-2, or 2) k/spl ges/2, n-k/spl ges/2+[k/2], and |F/sub e/|/spl les/k(n-k-3)-1, or 3) k/spl ges/2, n-k/spl ges/3, and |F/sub e/|/spl les/k, or 4) n-k/spl ges/3 and |F/sub v/|/spl les/n-3, or 5) n-k/spl ges/3 and |F/sub v/|+|F/sub e/|/spl les/k. Besides, for A/sub n,k/ with n-k=2, we construct a cycle of length at least 1) [n!/(n-k!)]-2 if |F/sub e/|/spl les/k-1, or 2) [n!/(n-k)!]-|F/sub v/|-2(k-1) if |F/sub v/|/spl les/k-1, or 3) [n!/(n-k)!]-|F/sub v/|-2(k-1) if |F/sub e/|+|F/sub v/|/spl les/k-1, where [n!/(n-k)!] is the number of nodes in A/sub n,k/.
ISSN:1045-9219
1558-2183
DOI:10.1109/71.755822