Loading…
Higher order log-concavity in Euler’s difference table
For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-poi...
Saved in:
Published in: | Discrete mathematics 2011-10, Vol.311 (20), p.2128-2134 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For 0≤k≤n, let enk be the entries in Euler’s difference table and let dnk=enk/k!. Dumont and Randrianarivony showed enk equals the number of permutations on [n] whose fixed points are contained in {1,2,…,k}. Rakotondrajao found a combinatorial interpretation of the number dnk in terms of k-fixed-points-permutations of [n]. We show that for any n≥1, the sequence {dnk}0≤k≤n is essentially 2-log-concave and reverse ultra log-concave.
► In this paper, we study the higher order log-concavity of {dnk}0≤k≤n, where dnk=enk/n! and enk are the entries in Euler’s difference table. ► We show that the sequence {dnk}0≤k≤n is essentially 2-log-concave for any n≥1. ► We also show that the sequence {dnk}0≤k≤n is reverse ultra log-concave for any n≥1. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2011.06.006 |