Loading…
Self-stabilizing leader election in optimal space under an arbitrary scheduler
A silent self-stabilizing asynchronous distributed algorithm, SSLE, is given for the leader election problem in a connected unoriented (bidirectional) network with unique IDs. SSLE also constructs a BFS tree on the network rooted at that leader. SSLE uses O(logn) space per process and stabilizes in...
Saved in:
Published in: | Theoretical computer science 2011-09, Vol.412 (40), p.5541-5561 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A silent self-stabilizing asynchronous distributed algorithm, SSLE, is given for the leader election problem in a connected unoriented (bidirectional) network with unique IDs. SSLE also constructs a BFS tree on the network rooted at that leader. SSLE uses O(logn) space per process and stabilizes in O(n) rounds, against the unfair daemon, where n is the number of processes in the network. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2010.05.001 |