Loading…

A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics

We introduce and analyze a discontinuous Galerkin method for the numerical discretization of a stationary incompressible magnetohydrodynamics model problem. The fluid unknowns are discretized with inf-sup stable discontinuous ℘ k 3 −℘ k −1 elements whereas the magnetic part of the equations is appro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2009-07, Vol.40 (1-3), p.281-314
Main Authors: Houston, Paul, Schötzau, Dominik, Wei, Xiaoxi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce and analyze a discontinuous Galerkin method for the numerical discretization of a stationary incompressible magnetohydrodynamics model problem. The fluid unknowns are discretized with inf-sup stable discontinuous ℘ k 3 −℘ k −1 elements whereas the magnetic part of the equations is approximated by discontinuous ℘ k 3 −℘ k +1 elements. We carry out a complete a-priori error analysis of the method and prove that the energy norm error is convergent of order k in the mesh size. These results are verified in a series of numerical experiments.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-008-9265-x