Loading…
A Self-Adaptive Strategy for the Time Integration of Navier-Stokes Equations
An efficient self-adaptive strategy for the explicit time integration of Navier-Stokes equations is presented. Unlike the conventional explicit integration schemes, it is not based on a standard CFL condition. Instead, the eigenvalues of the dynamical system are analytically bounded and the linear s...
Saved in:
Published in: | Numerical heat transfer. Part B, Fundamentals Fundamentals, 2011-08, Vol.60 (2), p.116-134 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An efficient self-adaptive strategy for the explicit time integration of Navier-Stokes equations is presented. Unlike the conventional explicit integration schemes, it is not based on a standard CFL condition. Instead, the eigenvalues of the dynamical system are analytically bounded and the linear stability domain of the time-integration scheme is adapted in order to maximize the time step. The method works independently of the underlying spatial mesh; therefore, it can be easily integrated into structured or unstructured codes. The additional computational cost is minimal, and a significant increase of the time step is achieved without losing accuracy. The effectiveness and robustness of the method are demonstrated on both a Cartesian staggered and an unstructured collocated formulation. In practice, CPU cost reductions up to more than 4 with respect to the conventional approach have been measured. |
---|---|
ISSN: | 1040-7790 1521-0626 |
DOI: | 10.1080/10407790.2011.594398 |