Loading…

A comparative study of 3 different cartilage repair techniques

Purpose The value of cell-free techniques in the treatment of cartilage defects remains under debate. In this study, cartilage repair of full-thickness chondral defects in the knees of Goettinger minipigs was assessed by treatment with a cell-free collagen type-I gel or a collagen type-I gel seeded...

Full description

Saved in:
Bibliographic Details
Published in:Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA sports traumatology, arthroscopy : official journal of the ESSKA, 2011-12, Vol.19 (12), p.2145-2152
Main Authors: Schneider, Ulrich, Schmidt-Rohlfing, Bernhard, Gavenis, Karsten, Maus, Uwe, Mueller-Rath, Ralf, Andereya, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The value of cell-free techniques in the treatment of cartilage defects remains under debate. In this study, cartilage repair of full-thickness chondral defects in the knees of Goettinger minipigs was assessed by treatment with a cell-free collagen type-I gel or a collagen type-I gel seeded with autologous chondrocytes. As a control, abrasion arthroplasty was included. Methods In 18 adult Goettinger minipigs, three full-thickness chondral defects were created in one knee of the hind leg. They were either treated with a cell-free collagen gel, a collagen gel seeded with 2 × 10 5 /ml chondrocytes, or left untreated. All animals were allowed unlimited weight bearing. At 6, 12, and 52 weeks, 6 animals were sacrificed. Immediately after recovery, a non-destructive biomechanical testing was performed. The repair tissue quality was evaluated histologically, and the O’Driscoll score was calculated. Results After 6 weeks, a high number of cells migrated into the initially cell-free collagen gel. After 1 year, a hyaline-like repair tissue in both groups has been created. As assessed by O’Driscoll scoring and col-II staining, repair tissue quality of the initially cell-free gel was equal to defects treated by cell-seeded collagen gel implantation after 1 year. All untreated control defects displayed a fibrous repair tissue. The mechanical properties represented by the e-modulus were inconsistent in the course of the study. Conclusions The implantation of a cell-free collagen type-I gel can lead to a high-quality repair tissue in the Goettinger minipig that equals a cell-based procedure after 1 year postoperatively. This study demonstrates the high chondrogenic potential of the applied collagen gel, which might help to overcome the disadvantages inherent in conventional cartilage tissue engineering methods.
ISSN:0942-2056
1433-7347
DOI:10.1007/s00167-011-1460-x