Loading…
Optimized Data Fusion for Kernel k-Means Clustering
This paper presents a novel optimized kernel k-means algorithm (OKKC) to combine multiple data sources for clustering analysis. The algorithm uses an alternating minimization framework to optimize the cluster membership and kernel coefficients as a nonconvex problem. In the proposed algorithm, the p...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2012-05, Vol.34 (5), p.1031-1039 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel optimized kernel k-means algorithm (OKKC) to combine multiple data sources for clustering analysis. The algorithm uses an alternating minimization framework to optimize the cluster membership and kernel coefficients as a nonconvex problem. In the proposed algorithm, the problem to optimize the cluster membership and the problem to optimize the kernel coefficients are all based on the same Rayleigh quotient objective; therefore the proposed algorithm converges locally. OKKC has a simpler procedure and lower complexity than other algorithms proposed in the literature. Simulated and real-life data fusion applications are experimentally studied, and the results validate that the proposed algorithm has comparable performance, moreover, it is more efficient on large-scale data sets. (The Matlab implementation of OKKC algorithm is downloadable from http://homes.esat.kuleuven.be/~sistawww/bio/syu/okkc.html.). |
---|---|
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2011.255 |