Loading…

Time course of expiratory propofol after bolus injection as measured by ion molecule reaction mass spectrometry

Propofol in exhaled breath can be detected and monitored in real time by ion molecule reaction mass spectrometry (IMR-MS). In addition, propofol concentration in exhaled breath is tightly correlated with propofol concentration in plasma. Therefore, real-time monitoring of expiratory propofol could b...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2012-04, Vol.403 (2), p.555-561
Main Authors: Hornuss, Cyrill, Wiepcke, Dirk, Praun, Siegfried, Dolch, Michael E., Apfel, Christian C., Schelling, Gustav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Propofol in exhaled breath can be detected and monitored in real time by ion molecule reaction mass spectrometry (IMR-MS). In addition, propofol concentration in exhaled breath is tightly correlated with propofol concentration in plasma. Therefore, real-time monitoring of expiratory propofol could be useful for titrating intravenous anesthesia, but only if concentration changes in plasma can be determined in exhaled breath without significant delay. To evaluate the utility of IMR-MS during non-steady-state conditions, we measured the time course of both expiratory propofol concentration and the processed electroencephalography (EEG) as a surrogate outcome for propofol effect after an IV bolus induction of propofol. Twenty-one patients scheduled for routine surgery were observed after a bolus of 2.5 mg kg −1 propofol for induction of anesthesia. Expiratory propofol was measured using IMR-MS and the cerebral propofol effect was estimated using the bispectral index (BIS). Primary endpoints were time to detection of expiratory propofol and time to onset of propofol’s effect on BIS, and the secondary endpoint was time to peak effect (highest expiratory propofol or lowest BIS). Expiratory propofol and changes in BIS were first detected at 43 ± 21 and 49 ± 11 s after bolus injection, respectively ( P  = 0.29). Peak propofol concentrations (9.2 ± 2.4 parts-per-billion) and lowest BIS values (23 ± 4) were reached after 208 ± 57 and 219 ± 62 s, respectively ( P  = 0.57). Expiratory propofol concentrations measured by IMR-MS have similar times to detection and peak concentrations compared with propofol effect as measured by the processed EEG (BIS). This suggests that expiratory propofol concentrations may be useful for titrating intravenous anesthesia.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-012-5856-3