Loading…

Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization

Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contam...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2012-05, Vol.94 (3), p.799-808
Main Authors: Saha, Ratul, Donofrio, Robert S., Goeres, Darla M., Bagley, Susan T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3
cites cdi_FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3
container_end_page 808
container_issue 3
container_start_page 799
container_title Applied microbiology and biotechnology
container_volume 94
creator Saha, Ratul
Donofrio, Robert S.
Goeres, Darla M.
Bagley, Susan T.
description Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used Pseudomonas Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs, Pseudomonas fluorescens MWF-1 and the newly described Pseudomonas oleovorans subsp. lubricantis . Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I Pseudomonas . The specificity of the probe was evaluated using hybridization experiments with whole cells of different Pseudomonas species. The probe's sensitivity was determined to be 10 3  cells/ml. It successfully detected and enumerated the abundance and distribution of Pseudomonas indicating levels between 3.2 (±1.1) × 10 6 and 5.0 (±2.3) × 10 6  cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both P. fluorescens MWF-1 and P. oleovorans subsp . lubricantis stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.
doi_str_mv 10.1007/s00253-011-3647-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_963488600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413481813</galeid><sourcerecordid>A413481813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3</originalsourceid><addsrcrecordid>eNqFksuO0zAUhiMEYsrAA7BBFiyARQbfErvLasSl0gikAmvLl5PiIbGLnQjKK_DSONMBVMRFXnhxvvMf_z5_Vd0n-IxgLJ5ljGnDakxIzVou6v2NakE4ozVuCb9ZLTARTS2apTyp7uR8iTGhsm1vVyeUYk4po4vq20bvvEMORrCjjwHFDqXN6xXapjjt0BrtMkwuDjFol5EPyMYw6sEHPYJDA4y6_xzTRx-2qOsnXxgdHDI-dr4fUBfToK9kzX6uxwTZQhhnoezHCX3Ym-Sd_3oF3a1udbrPcO_6Pq3ev3j-7vxVffHm5fp8dVHbRuKxdha0M0Y4KQQTmpqWUGckBmOxwZxb2kpshLaEsk40nWiBW66Z4YQSBx07rR4fdHcpfpogj2rw5Vl9rwPEKatly7iULcaFfPJPsvwvaxiVnPwfxVhK3i4bWtCHv6GXcUqhWFbLRjIuJJ9HPzpAW92D8qGLY9J21lSrMo5LIgkr1NkfqHIcDL6sCsoa4Ljh6VHDvE74Mm71lLNav90cs-TA2hRzTtCpXfKDTvtiZvYj1CGAqgRQzQFU-9Lz4NrbZAZwPzt-JK4A9ADkUgpbSL_M_131O2u35cs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>958347840</pqid></control><display><type>article</type><title>Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Saha, Ratul ; Donofrio, Robert S. ; Goeres, Darla M. ; Bagley, Susan T.</creator><creatorcontrib>Saha, Ratul ; Donofrio, Robert S. ; Goeres, Darla M. ; Bagley, Susan T.</creatorcontrib><description>Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used Pseudomonas Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs, Pseudomonas fluorescens MWF-1 and the newly described Pseudomonas oleovorans subsp. lubricantis . Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I Pseudomonas . The specificity of the probe was evaluated using hybridization experiments with whole cells of different Pseudomonas species. The probe's sensitivity was determined to be 10 3  cells/ml. It successfully detected and enumerated the abundance and distribution of Pseudomonas indicating levels between 3.2 (±1.1) × 10 6 and 5.0 (±2.3) × 10 6  cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both P. fluorescens MWF-1 and P. oleovorans subsp . lubricantis stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-011-3647-y</identifier><identifier>PMID: 22042232</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Abundance ; Analysis ; Bacteria ; Bacterial Load ; Biofilms ; Biofilms - growth &amp; development ; Biological products ; Biomedical and Life Sciences ; Biotechnology ; Contamination ; Culture techniques ; Cytogenetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; E coli ; Environmental Biotechnology ; Environmental Microbiology ; High speed machining ; Hybridization ; In Situ Hybridization, Fluorescence - methods ; Life Sciences ; Lubricants &amp; lubrication ; Metal products industry ; Metalworking fluids ; Metalworking industry ; Metalworking machinery ; Microbial activity ; Microbial degradation ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Monitors ; Pathogens ; Pseudomonas ; Pseudomonas fluorescens ; Pseudomonas fluorescens - genetics ; Pseudomonas fluorescens - isolation &amp; purification ; Pseudomonas fluorescens - physiology ; Pseudomonas oleovorans ; Pseudomonas oleovorans - genetics ; Pseudomonas oleovorans - isolation &amp; purification ; Pseudomonas oleovorans - physiology ; RNA ; RNA, Ribosomal - genetics ; RNA, Ribosomal, 16S - genetics ; Sensitivity and Specificity ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2012-05, Vol.94 (3), p.799-808</ispartof><rights>Springer-Verlag 2011</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3</citedby><cites>FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/958347840/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/958347840?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342,74642</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22042232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saha, Ratul</creatorcontrib><creatorcontrib>Donofrio, Robert S.</creatorcontrib><creatorcontrib>Goeres, Darla M.</creatorcontrib><creatorcontrib>Bagley, Susan T.</creatorcontrib><title>Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used Pseudomonas Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs, Pseudomonas fluorescens MWF-1 and the newly described Pseudomonas oleovorans subsp. lubricantis . Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I Pseudomonas . The specificity of the probe was evaluated using hybridization experiments with whole cells of different Pseudomonas species. The probe's sensitivity was determined to be 10 3  cells/ml. It successfully detected and enumerated the abundance and distribution of Pseudomonas indicating levels between 3.2 (±1.1) × 10 6 and 5.0 (±2.3) × 10 6  cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both P. fluorescens MWF-1 and P. oleovorans subsp . lubricantis stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.</description><subject>Abundance</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacterial Load</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biological products</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Contamination</subject><subject>Culture techniques</subject><subject>Cytogenetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>E coli</subject><subject>Environmental Biotechnology</subject><subject>Environmental Microbiology</subject><subject>High speed machining</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence - methods</subject><subject>Life Sciences</subject><subject>Lubricants &amp; lubrication</subject><subject>Metal products industry</subject><subject>Metalworking fluids</subject><subject>Metalworking industry</subject><subject>Metalworking machinery</subject><subject>Microbial activity</subject><subject>Microbial degradation</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Monitors</subject><subject>Pathogens</subject><subject>Pseudomonas</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - genetics</subject><subject>Pseudomonas fluorescens - isolation &amp; purification</subject><subject>Pseudomonas fluorescens - physiology</subject><subject>Pseudomonas oleovorans</subject><subject>Pseudomonas oleovorans - genetics</subject><subject>Pseudomonas oleovorans - isolation &amp; purification</subject><subject>Pseudomonas oleovorans - physiology</subject><subject>RNA</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFksuO0zAUhiMEYsrAA7BBFiyARQbfErvLasSl0gikAmvLl5PiIbGLnQjKK_DSONMBVMRFXnhxvvMf_z5_Vd0n-IxgLJ5ljGnDakxIzVou6v2NakE4ozVuCb9ZLTARTS2apTyp7uR8iTGhsm1vVyeUYk4po4vq20bvvEMORrCjjwHFDqXN6xXapjjt0BrtMkwuDjFol5EPyMYw6sEHPYJDA4y6_xzTRx-2qOsnXxgdHDI-dr4fUBfToK9kzX6uxwTZQhhnoezHCX3Ym-Sd_3oF3a1udbrPcO_6Pq3ev3j-7vxVffHm5fp8dVHbRuKxdha0M0Y4KQQTmpqWUGckBmOxwZxb2kpshLaEsk40nWiBW66Z4YQSBx07rR4fdHcpfpogj2rw5Vl9rwPEKatly7iULcaFfPJPsvwvaxiVnPwfxVhK3i4bWtCHv6GXcUqhWFbLRjIuJJ9HPzpAW92D8qGLY9J21lSrMo5LIgkr1NkfqHIcDL6sCsoa4Ljh6VHDvE74Mm71lLNav90cs-TA2hRzTtCpXfKDTvtiZvYj1CGAqgRQzQFU-9Lz4NrbZAZwPzt-JK4A9ADkUgpbSL_M_131O2u35cs</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Saha, Ratul</creator><creator>Donofrio, Robert S.</creator><creator>Goeres, Darla M.</creator><creator>Bagley, Susan T.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>7TV</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization</title><author>Saha, Ratul ; Donofrio, Robert S. ; Goeres, Darla M. ; Bagley, Susan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abundance</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacterial Load</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biological products</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Contamination</topic><topic>Culture techniques</topic><topic>Cytogenetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>E coli</topic><topic>Environmental Biotechnology</topic><topic>Environmental Microbiology</topic><topic>High speed machining</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence - methods</topic><topic>Life Sciences</topic><topic>Lubricants &amp; lubrication</topic><topic>Metal products industry</topic><topic>Metalworking fluids</topic><topic>Metalworking industry</topic><topic>Metalworking machinery</topic><topic>Microbial activity</topic><topic>Microbial degradation</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Monitors</topic><topic>Pathogens</topic><topic>Pseudomonas</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - genetics</topic><topic>Pseudomonas fluorescens - isolation &amp; purification</topic><topic>Pseudomonas fluorescens - physiology</topic><topic>Pseudomonas oleovorans</topic><topic>Pseudomonas oleovorans - genetics</topic><topic>Pseudomonas oleovorans - isolation &amp; purification</topic><topic>Pseudomonas oleovorans - physiology</topic><topic>RNA</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Ratul</creatorcontrib><creatorcontrib>Donofrio, Robert S.</creatorcontrib><creatorcontrib>Goeres, Darla M.</creatorcontrib><creatorcontrib>Bagley, Susan T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Ratul</au><au>Donofrio, Robert S.</au><au>Goeres, Darla M.</au><au>Bagley, Susan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>94</volume><issue>3</issue><spage>799</spage><epage>808</epage><pages>799-808</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used Pseudomonas Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs, Pseudomonas fluorescens MWF-1 and the newly described Pseudomonas oleovorans subsp. lubricantis . Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I Pseudomonas . The specificity of the probe was evaluated using hybridization experiments with whole cells of different Pseudomonas species. The probe's sensitivity was determined to be 10 3  cells/ml. It successfully detected and enumerated the abundance and distribution of Pseudomonas indicating levels between 3.2 (±1.1) × 10 6 and 5.0 (±2.3) × 10 6  cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both P. fluorescens MWF-1 and P. oleovorans subsp . lubricantis stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22042232</pmid><doi>10.1007/s00253-011-3647-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2012-05, Vol.94 (3), p.799-808
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_963488600
source ABI/INFORM global; Springer Nature
subjects Abundance
Analysis
Bacteria
Bacterial Load
Biofilms
Biofilms - growth & development
Biological products
Biomedical and Life Sciences
Biotechnology
Contamination
Culture techniques
Cytogenetics
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Ribosomal - chemistry
DNA, Ribosomal - genetics
E coli
Environmental Biotechnology
Environmental Microbiology
High speed machining
Hybridization
In Situ Hybridization, Fluorescence - methods
Life Sciences
Lubricants & lubrication
Metal products industry
Metalworking fluids
Metalworking industry
Metalworking machinery
Microbial activity
Microbial degradation
Microbial Genetics and Genomics
Microbiology
Microorganisms
Monitors
Pathogens
Pseudomonas
Pseudomonas fluorescens
Pseudomonas fluorescens - genetics
Pseudomonas fluorescens - isolation & purification
Pseudomonas fluorescens - physiology
Pseudomonas oleovorans
Pseudomonas oleovorans - genetics
Pseudomonas oleovorans - isolation & purification
Pseudomonas oleovorans - physiology
RNA
RNA, Ribosomal - genetics
RNA, Ribosomal, 16S - genetics
Sensitivity and Specificity
Studies
title Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20detection%20of%20rRNA%20group%20I%20pseudomonads%20in%20contaminated%20metalworking%20fluids%20and%20biofilm%20formation%20by%20fluorescent%20in%20situ%20hybridization&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Saha,%20Ratul&rft.date=2012-05-01&rft.volume=94&rft.issue=3&rft.spage=799&rft.epage=808&rft.pages=799-808&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-011-3647-y&rft_dat=%3Cgale_proqu%3EA413481813%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=958347840&rft_id=info:pmid/22042232&rft_galeid=A413481813&rfr_iscdi=true