Loading…
Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization
Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contam...
Saved in:
Published in: | Applied microbiology and biotechnology 2012-05, Vol.94 (3), p.799-808 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3 |
---|---|
cites | cdi_FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3 |
container_end_page | 808 |
container_issue | 3 |
container_start_page | 799 |
container_title | Applied microbiology and biotechnology |
container_volume | 94 |
creator | Saha, Ratul Donofrio, Robert S. Goeres, Darla M. Bagley, Susan T. |
description | Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I
Pseudomonas
dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used
Pseudomonas
Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs,
Pseudomonas fluorescens
MWF-1 and the newly described
Pseudomonas oleovorans
subsp.
lubricantis
. Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I
Pseudomonas
. The specificity of the probe was evaluated using hybridization experiments with whole cells of different
Pseudomonas
species. The probe's sensitivity was determined to be 10
3
cells/ml. It successfully detected and enumerated the abundance and distribution of
Pseudomonas
indicating levels between 3.2 (±1.1) × 10
6
and 5.0 (±2.3) × 10
6
cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both
P. fluorescens
MWF-1 and
P. oleovorans
subsp
. lubricantis
stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads. |
doi_str_mv | 10.1007/s00253-011-3647-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_963488600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413481813</galeid><sourcerecordid>A413481813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3</originalsourceid><addsrcrecordid>eNqFksuO0zAUhiMEYsrAA7BBFiyARQbfErvLasSl0gikAmvLl5PiIbGLnQjKK_DSONMBVMRFXnhxvvMf_z5_Vd0n-IxgLJ5ljGnDakxIzVou6v2NakE4ozVuCb9ZLTARTS2apTyp7uR8iTGhsm1vVyeUYk4po4vq20bvvEMORrCjjwHFDqXN6xXapjjt0BrtMkwuDjFol5EPyMYw6sEHPYJDA4y6_xzTRx-2qOsnXxgdHDI-dr4fUBfToK9kzX6uxwTZQhhnoezHCX3Ym-Sd_3oF3a1udbrPcO_6Pq3ev3j-7vxVffHm5fp8dVHbRuKxdha0M0Y4KQQTmpqWUGckBmOxwZxb2kpshLaEsk40nWiBW66Z4YQSBx07rR4fdHcpfpogj2rw5Vl9rwPEKatly7iULcaFfPJPsvwvaxiVnPwfxVhK3i4bWtCHv6GXcUqhWFbLRjIuJJ9HPzpAW92D8qGLY9J21lSrMo5LIgkr1NkfqHIcDL6sCsoa4Ljh6VHDvE74Mm71lLNav90cs-TA2hRzTtCpXfKDTvtiZvYj1CGAqgRQzQFU-9Lz4NrbZAZwPzt-JK4A9ADkUgpbSL_M_131O2u35cs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>958347840</pqid></control><display><type>article</type><title>Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Saha, Ratul ; Donofrio, Robert S. ; Goeres, Darla M. ; Bagley, Susan T.</creator><creatorcontrib>Saha, Ratul ; Donofrio, Robert S. ; Goeres, Darla M. ; Bagley, Susan T.</creatorcontrib><description>Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I
Pseudomonas
dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used
Pseudomonas
Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs,
Pseudomonas fluorescens
MWF-1 and the newly described
Pseudomonas oleovorans
subsp.
lubricantis
. Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I
Pseudomonas
. The specificity of the probe was evaluated using hybridization experiments with whole cells of different
Pseudomonas
species. The probe's sensitivity was determined to be 10
3
cells/ml. It successfully detected and enumerated the abundance and distribution of
Pseudomonas
indicating levels between 3.2 (±1.1) × 10
6
and 5.0 (±2.3) × 10
6
cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both
P. fluorescens
MWF-1 and
P. oleovorans
subsp
. lubricantis
stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-011-3647-y</identifier><identifier>PMID: 22042232</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Abundance ; Analysis ; Bacteria ; Bacterial Load ; Biofilms ; Biofilms - growth & development ; Biological products ; Biomedical and Life Sciences ; Biotechnology ; Contamination ; Culture techniques ; Cytogenetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; E coli ; Environmental Biotechnology ; Environmental Microbiology ; High speed machining ; Hybridization ; In Situ Hybridization, Fluorescence - methods ; Life Sciences ; Lubricants & lubrication ; Metal products industry ; Metalworking fluids ; Metalworking industry ; Metalworking machinery ; Microbial activity ; Microbial degradation ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Monitors ; Pathogens ; Pseudomonas ; Pseudomonas fluorescens ; Pseudomonas fluorescens - genetics ; Pseudomonas fluorescens - isolation & purification ; Pseudomonas fluorescens - physiology ; Pseudomonas oleovorans ; Pseudomonas oleovorans - genetics ; Pseudomonas oleovorans - isolation & purification ; Pseudomonas oleovorans - physiology ; RNA ; RNA, Ribosomal - genetics ; RNA, Ribosomal, 16S - genetics ; Sensitivity and Specificity ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2012-05, Vol.94 (3), p.799-808</ispartof><rights>Springer-Verlag 2011</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3</citedby><cites>FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/958347840/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/958347840?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342,74642</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22042232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saha, Ratul</creatorcontrib><creatorcontrib>Donofrio, Robert S.</creatorcontrib><creatorcontrib>Goeres, Darla M.</creatorcontrib><creatorcontrib>Bagley, Susan T.</creatorcontrib><title>Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I
Pseudomonas
dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used
Pseudomonas
Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs,
Pseudomonas fluorescens
MWF-1 and the newly described
Pseudomonas oleovorans
subsp.
lubricantis
. Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I
Pseudomonas
. The specificity of the probe was evaluated using hybridization experiments with whole cells of different
Pseudomonas
species. The probe's sensitivity was determined to be 10
3
cells/ml. It successfully detected and enumerated the abundance and distribution of
Pseudomonas
indicating levels between 3.2 (±1.1) × 10
6
and 5.0 (±2.3) × 10
6
cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both
P. fluorescens
MWF-1 and
P. oleovorans
subsp
. lubricantis
stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.</description><subject>Abundance</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacterial Load</subject><subject>Biofilms</subject><subject>Biofilms - growth & development</subject><subject>Biological products</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Contamination</subject><subject>Culture techniques</subject><subject>Cytogenetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>E coli</subject><subject>Environmental Biotechnology</subject><subject>Environmental Microbiology</subject><subject>High speed machining</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence - methods</subject><subject>Life Sciences</subject><subject>Lubricants & lubrication</subject><subject>Metal products industry</subject><subject>Metalworking fluids</subject><subject>Metalworking industry</subject><subject>Metalworking machinery</subject><subject>Microbial activity</subject><subject>Microbial degradation</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Monitors</subject><subject>Pathogens</subject><subject>Pseudomonas</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - genetics</subject><subject>Pseudomonas fluorescens - isolation & purification</subject><subject>Pseudomonas fluorescens - physiology</subject><subject>Pseudomonas oleovorans</subject><subject>Pseudomonas oleovorans - genetics</subject><subject>Pseudomonas oleovorans - isolation & purification</subject><subject>Pseudomonas oleovorans - physiology</subject><subject>RNA</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFksuO0zAUhiMEYsrAA7BBFiyARQbfErvLasSl0gikAmvLl5PiIbGLnQjKK_DSONMBVMRFXnhxvvMf_z5_Vd0n-IxgLJ5ljGnDakxIzVou6v2NakE4ozVuCb9ZLTARTS2apTyp7uR8iTGhsm1vVyeUYk4po4vq20bvvEMORrCjjwHFDqXN6xXapjjt0BrtMkwuDjFol5EPyMYw6sEHPYJDA4y6_xzTRx-2qOsnXxgdHDI-dr4fUBfToK9kzX6uxwTZQhhnoezHCX3Ym-Sd_3oF3a1udbrPcO_6Pq3ev3j-7vxVffHm5fp8dVHbRuKxdha0M0Y4KQQTmpqWUGckBmOxwZxb2kpshLaEsk40nWiBW66Z4YQSBx07rR4fdHcpfpogj2rw5Vl9rwPEKatly7iULcaFfPJPsvwvaxiVnPwfxVhK3i4bWtCHv6GXcUqhWFbLRjIuJJ9HPzpAW92D8qGLY9J21lSrMo5LIgkr1NkfqHIcDL6sCsoa4Ljh6VHDvE74Mm71lLNav90cs-TA2hRzTtCpXfKDTvtiZvYj1CGAqgRQzQFU-9Lz4NrbZAZwPzt-JK4A9ADkUgpbSL_M_131O2u35cs</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Saha, Ratul</creator><creator>Donofrio, Robert S.</creator><creator>Goeres, Darla M.</creator><creator>Bagley, Susan T.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>7TV</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization</title><author>Saha, Ratul ; Donofrio, Robert S. ; Goeres, Darla M. ; Bagley, Susan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abundance</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacterial Load</topic><topic>Biofilms</topic><topic>Biofilms - growth & development</topic><topic>Biological products</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Contamination</topic><topic>Culture techniques</topic><topic>Cytogenetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>E coli</topic><topic>Environmental Biotechnology</topic><topic>Environmental Microbiology</topic><topic>High speed machining</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence - methods</topic><topic>Life Sciences</topic><topic>Lubricants & lubrication</topic><topic>Metal products industry</topic><topic>Metalworking fluids</topic><topic>Metalworking industry</topic><topic>Metalworking machinery</topic><topic>Microbial activity</topic><topic>Microbial degradation</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Monitors</topic><topic>Pathogens</topic><topic>Pseudomonas</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - genetics</topic><topic>Pseudomonas fluorescens - isolation & purification</topic><topic>Pseudomonas fluorescens - physiology</topic><topic>Pseudomonas oleovorans</topic><topic>Pseudomonas oleovorans - genetics</topic><topic>Pseudomonas oleovorans - isolation & purification</topic><topic>Pseudomonas oleovorans - physiology</topic><topic>RNA</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Ratul</creatorcontrib><creatorcontrib>Donofrio, Robert S.</creatorcontrib><creatorcontrib>Goeres, Darla M.</creatorcontrib><creatorcontrib>Bagley, Susan T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Ratul</au><au>Donofrio, Robert S.</au><au>Goeres, Darla M.</au><au>Bagley, Susan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>94</volume><issue>3</issue><spage>799</spage><epage>808</epage><pages>799-808</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I
Pseudomonas
dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used
Pseudomonas
Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs,
Pseudomonas fluorescens
MWF-1 and the newly described
Pseudomonas oleovorans
subsp.
lubricantis
. Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I
Pseudomonas
. The specificity of the probe was evaluated using hybridization experiments with whole cells of different
Pseudomonas
species. The probe's sensitivity was determined to be 10
3
cells/ml. It successfully detected and enumerated the abundance and distribution of
Pseudomonas
indicating levels between 3.2 (±1.1) × 10
6
and 5.0 (±2.3) × 10
6
cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both
P. fluorescens
MWF-1 and
P. oleovorans
subsp
. lubricantis
stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22042232</pmid><doi>10.1007/s00253-011-3647-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2012-05, Vol.94 (3), p.799-808 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_963488600 |
source | ABI/INFORM global; Springer Nature |
subjects | Abundance Analysis Bacteria Bacterial Load Biofilms Biofilms - growth & development Biological products Biomedical and Life Sciences Biotechnology Contamination Culture techniques Cytogenetics DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Ribosomal - chemistry DNA, Ribosomal - genetics E coli Environmental Biotechnology Environmental Microbiology High speed machining Hybridization In Situ Hybridization, Fluorescence - methods Life Sciences Lubricants & lubrication Metal products industry Metalworking fluids Metalworking industry Metalworking machinery Microbial activity Microbial degradation Microbial Genetics and Genomics Microbiology Microorganisms Monitors Pathogens Pseudomonas Pseudomonas fluorescens Pseudomonas fluorescens - genetics Pseudomonas fluorescens - isolation & purification Pseudomonas fluorescens - physiology Pseudomonas oleovorans Pseudomonas oleovorans - genetics Pseudomonas oleovorans - isolation & purification Pseudomonas oleovorans - physiology RNA RNA, Ribosomal - genetics RNA, Ribosomal, 16S - genetics Sensitivity and Specificity Studies |
title | Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20detection%20of%20rRNA%20group%20I%20pseudomonads%20in%20contaminated%20metalworking%20fluids%20and%20biofilm%20formation%20by%20fluorescent%20in%20situ%20hybridization&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Saha,%20Ratul&rft.date=2012-05-01&rft.volume=94&rft.issue=3&rft.spage=799&rft.epage=808&rft.pages=799-808&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-011-3647-y&rft_dat=%3Cgale_proqu%3EA413481813%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c580t-dceadbb7d87737a2b612db80ebc0b044c2680b7ac123f75f76e4c4a3b4121def3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=958347840&rft_id=info:pmid/22042232&rft_galeid=A413481813&rfr_iscdi=true |