Loading…

Competition between Birch reduction and fluorine abstraction in reactions of hydrated electrons (H2O)n― with the isomers of di- and trifluorobenzene

The reactions of the isomers of di- and trifluorobenzene with hydrated electrons (H(2)O)(n)(-), n = 19-70, have been studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. While Birch reduction, i.e. H atom transfer to the aromatic ring, was observed for all studied isomers...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2011-05, Vol.13 (19), p.8924-8930
Main Authors: HÖCKENDORF, Robert F, PETRU BALAJ, O, BEYER, Martin K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The reactions of the isomers of di- and trifluorobenzene with hydrated electrons (H(2)O)(n)(-), n = 19-70, have been studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. While Birch reduction, i.e. H atom transfer to the aromatic ring, was observed for all studied isomers, a strong dependence on the substitution pattern was observed for fluorine abstraction. Nanocalorimetry combined with G3 calculations are used to analyze the thermochemistry of the reactions. Fluorine abstraction is at least 100 kJ mol(-1) more exothermic than Birch reduction, yet the latter is the dominant reaction pathway for all three difluorobenzene isomers. Fluorine abstraction and Birch reduction face activation barriers of comparable magnitude. The relative barrier height is sensitive to the substitution pattern. Birch reduction occurs selectively with 1,3- and 1,4-difluorobenzene in a nanoscale aqueous environment.
ISSN:1463-9076
1463-9084
DOI:10.1039/c1cp20505f